1.opencv的追踪算法
1.1opencv的八个追踪算法
"csrt": cv2.TrackerCSRT_create, "kcf": cv2.TrackerKCF_create, "boosting": cv2.TrackerBoosting_create, "mil": cv2.TrackerMIL_create, "tld": cv2.TrackerTLD_create, "medianflow": cv2.TrackerMedianFlow_create, "mosse": cv2.TrackerMOSSE_create主要用到 kcf(卡尔曼滤波),效率和准确率都不错
1.2基于kcf的OpenCV追踪检测流程
# 实例化OpenCV's multi-object tracker
trackers = cv2.legacy.MultiTracker_create() #实例化一个追踪器
# 视频流
while True:
# 取当前帧
ret , frame = vs.cv2.VideoCapture(args["video"]) #选择参数列表传入的追踪器
# 到头了就结束
if ret is False:
print("没有视频")
break
# resize每一帧
(h, w) = frame.shape[:2]
width=600
r = width / float(w)
dim = (width, int(h * r))
frame = cv2.resize(frame,
# 追踪结果
(success, boxes) = tracker
# 绘制区域
for box in boxes:
(x, y, w, h) = [int(v)
cv2.rectangle(frame, (
# 显示
cv2.imshow("Frame", frame)
key = cv2.waitKey(100) & 0
if key == ord("s"):
# 选择一个区域,按s
box = cv2.selectROI("F
sho

最低0.47元/天 解锁文章
981

被折叠的 条评论
为什么被折叠?



