一定要清楚的一个问题,就是:(如图)两条黑色的线的和一定小于蓝色的和,但是平方的和之间就不一定是这个关系了!
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
using namespace std;
const double INF = 0x7fffffff;
const double eps = 1e-9;
const int N = 110;
int n;
double w[N][N], lx[N], ly[N];
int l[N], r[N];
int wx[N], wy[N], bx[N], by[N];
bool S[N], T[N];
bool eq( double x, double y ) {
return fabs ( x - y ) < eps;
}
bool match( int i )
{
S[i] = true;
for ( int j = 1; j <= n; ++j ) if ( eq( lx[i] + ly[j], w[i][j] ) && !T[j] ) {
T[j] = true;
if ( !l[j] || match(l[j]) ) {
l[j] = i;
//r[i] = j;
return true;
}
}
return false;
}
void update()
{
double a = INF;
for ( int i = 1; i <= n; ++i ) if ( S[i] )
for ( int j = 1; j <= n; ++j ) if ( !T[j] )
a = min( a, lx[i]+ly[j]-w[i][j] );
for ( int i = 1; i <= n; ++i ) {
if ( S[i] ) lx[i] -= a;
if ( T[i] ) ly[i] += a;
}
}
void KM()
{
//memset(l, 0, sizeof(l));
//memset(r, 0, sizeof(r));
for ( int i = 1; i <= n; ++i ) {
l[i] = lx[i] = ly[i] = 0;
for ( int j = 1; j <= n; ++j )
lx[i] = max( lx[i], w[i][j] );
}
for ( int i = 1; i <= n; ++i ) {
for(;;) {
for ( int j = 1; j <= n; ++j ) S[j] = T[j] = 0;
if ( match(i) ) break;
else update();
}
}
}
int main()
{
bool first = false;
while ( scanf("%d", &n) != EOF ) {
if ( first ) printf("\n");
first = true;
for ( int i = 1; i <= n; ++i ) scanf("%d%d", &wx[i], &wy[i]);
for ( int i = 1; i <= n; ++i ) scanf("%d%d", &bx[i], &by[i]);
for ( int i = 1; i <= n; ++i )
for ( int j = 1; j <= n; ++j )
w[j][i] = -sqrt((double)(wx[i]-bx[j])*(wx[i]-bx[j])+(double)(wy[i]-by[j])*(wy[i]-by[j]));
KM();
for ( int i = 1; i <= n; ++i ) printf("%d\n", l[i]);
}
}
本文深入探讨了 Kuhn-Munkres (KM) 算法的应用,该算法用于解决分配问题,特别是在两个集合之间的最优匹配中。通过具体的 C++ 实现示例,展示了如何计算点之间的最小总距离,适用于需要解决类似最优分配问题的读者。
256

被折叠的 条评论
为什么被折叠?



