[hdu 6181 Two Paths] Dijkstra求次短路
分类:Graph
Dijkstra
1. 题目链接
2. 题意描述
给定一个
N
个顶点
3. 解题思路
首先,以点
1
、点
然后,次短路的取值,分以下情况进行讨论:
- 当图中从
1
到
N 有两条以上最短路径的时候,那么最短路与次短路相等; - 当图中从
1
到
N 有两条以上最短路径的时候,次短路又有以下两种情况:
- 最短路+最短路路径上边长最小的边的边长两倍。
- 经过一条非最短路路径上的边,假设为 (u→v) ,此时次短路长度= len(1,u)+len(u,v)+len(v,n) = d1[u]+len(u,v)+dn[v] 。
可以dfs求出最短路径的条数、最短路径上最小边长,并标记在最短路径上的边;
然后,枚举所有不在最短路径上的边,求出
d1[u]+len(u,v)+dn[v]
并更新答案即可。
4. 实现代码
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef long double LB;
typedef unsigned int uint;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<int, LL> PIL;
typedef pair<LL, LL> PLL;
typedef pair<LB, LB> PLB;
typedef vector<int> VI;
const int INF = 0x3f3f3f3f;
const LL INFL = 0x3f3f3f3f3f3f3f3fLL;
const long double PI = acos(-1.0);
const long double eps = 1e-4;
void debug() { cout << endl; }
template<typename T, typename ...R> void debug (T f, R ...r) { cout << "[" << f << "]"; debug (r...); }
template<typename T> inline void umax(T &a, T b) { a = max(a, b); }
template<typename T> inline void umin(T &a, T b) { a = min(a, b); }
template <typename T> inline bool scan_d (T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0; //EOF
while (c != '-' && (c < '0' || c > '9') ) if((c = getchar()) == EOF) return 0;
sgn = (c == '-') ? -1 : 1;
ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0' && c <= '9') ret = ret * 10 + (c - '0');
ret *= sgn;
return 1;
}
template<typename T> void print(T x) {
static char s[33], *s1; s1 = s;
if (!x) *s1++ = '0';
if (x < 0) putchar('-'), x = -x;
while(x) *s1++ = (x % 10 + '0'), x /= 10;
while(s1-- != s) putchar(*s1);
}
template<typename T> void println(T x) { print(x); putchar('\n'); }
template<typename T> T randIntv(T a, T b) { return rand() % (b - a + 1) + a; } /*[a, b]*/
const int MAXN = 100005;
const int MAXE = 100005;
int T, n, m;
template<class T>
struct Dijkstra {
struct Edge {
T w;
int v, next;
} edge[MAXE << 1];
typedef pair<T, int> QNode;
int head[MAXN], tot;
T d1[MAXN], dn[MAXN], INF;
void init() {
tot = 0;
memset(head, -1, sizeof(head));
}
void add(int u, int v, T w) {
edge[tot].v = v;
edge[tot].w = w;
edge[tot].next = head[u];
head[u] = tot++;
}
void run(LL d[], int u) {
priority_queue<QNode, vector<QNode>, greater<QNode> >q;
memset(d, 0x3f, sizeof(T) * (n + 1)); INF = d[0];
q.push(QNode(0, u)); d[u] = 0;
while(!q.empty()) {
QNode ftp = q.top(); q.pop();
int u = ftp.second;
if(ftp.first > d[u]) continue;
for(int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].v; T w = edge[i].w;
if(d[u] + w < d[v]) {
d[v] = d[u] + w;
q.push(QNode(d[v], v));
}
}
}
}
bool flag[MAXE << 1];
bool judge(int u, T & minw) {
int v, cnt = 0; bool ret = false;
for(int i = head[u]; ~i; i = edge[i].next) {
v = edge[i].v;
if(d1[u] + edge[i].w + dn[v] == d1[n]) {
umin(minw, edge[i].w);
ret |= judge(v, minw);
cnt += (d1[v] + dn[v] == d1[n]);
flag[i] = true;
}
}
return ret | cnt >= 2;
}
bool vis[MAXN];
void dfs(int u, T& ans) {
if(vis[u]) return;
vis[u] = true;
int v;
for(int i = head[u]; ~i; i = edge[i].next) {
if(flag[i]) continue;
v = edge[i].v;
umin(ans, d1[u] + edge[i].w + dn[v]);
dfs(v, ans);
}
}
};
Dijkstra<LL> dij;
int main() {
#ifdef ___LOCAL_WONZY___
freopen ("input.txt", "r", stdin);
#endif // ___LOCAL_WONZY___
int u, v; LL w;
scan_d(T);
while(T --) {
scan_d(n), scan_d(m);
dij.init();
for(int i = 1; i <= m; ++i) {
scan_d(u), scan_d(v), scan_d(w);
dij.add(u, v, w);
dij.add(v, u, w);
}
dij.run(dij.d1, 1);
dij.run(dij.dn, n);
LL ans = INFL, minw = INFL;
memset(dij.flag, false, sizeof(dij.flag));
bool two = dij.judge(1, minw);
if(two) {
ans = dij.d1[n];
} else {
ans = dij.d1[n] + 2 * minw;
memset(dij.vis, false, sizeof(dij.vis));
dij.dfs(1, ans);
}
println(ans);
}
#ifdef ___LOCAL_WONZY___
cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC * 1000 << " ms." << endl;
#endif // ___LOCAL_WONZY___
return 0;
}