POJ 1251 Jungle Roads (kruskal)

本文介绍了一种解决最小生成树问题的经典算法——Kruskal算法,并通过一个具体的编程实例详细展示了如何使用该算法来寻找连接所有村庄的最便宜道路网络。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Jungle Roads
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 28106 Accepted: 13266

Description


The Head Elder of the tropical island of Lagrishan has a problem. A burst of foreign aid money was spent on extra roads between villages some years ago. But the jungle overtakes roads relentlessly, so the large road network is too expensive to maintain. The Council of Elders must choose to stop maintaining some roads. The map above on the left shows all the roads in use now and the cost in aacms per month to maintain them. Of course there needs to be some way to get between all the villages on maintained roads, even if the route is not as short as before. The Chief Elder would like to tell the Council of Elders what would be the smallest amount they could spend in aacms per month to maintain roads that would connect all the villages. The villages are labeled A through I in the maps above. The map on the right shows the roads that could be maintained most cheaply, for 216 aacms per month. Your task is to write a program that will solve such problems. 

Input

The input consists of one to 100 data sets, followed by a final line containing only 0. Each data set starts with a line containing only a number n, which is the number of villages, 1 < n < 27, and the villages are labeled with the first n letters of the alphabet, capitalized. Each data set is completed with n-1 lines that start with village labels in alphabetical order. There is no line for the last village. Each line for a village starts with the village label followed by a number, k, of roads from this village to villages with labels later in the alphabet. If k is greater than 0, the line continues with data for each of the k roads. The data for each road is the village label for the other end of the road followed by the monthly maintenance cost in aacms for the road. Maintenance costs will be positive integers less than 100. All data fields in the row are separated by single blanks. The road network will always allow travel between all the villages. The network will never have more than 75 roads. No village will have more than 15 roads going to other villages (before or after in the alphabet). In the sample input below, the first data set goes with the map above. 

Output

The output is one integer per line for each data set: the minimum cost in aacms per month to maintain a road system that connect all the villages. Caution: A brute force solution that examines every possible set of roads will not finish within the one minute time limit. 

Sample Input

9
A 2 B 12 I 25
B 3 C 10 H 40 I 8
C 2 D 18 G 55
D 1 E 44
E 2 F 60 G 38
F 0
G 1 H 35
H 1 I 35
3
A 2 B 10 C 40
B 1 C 20
0

Sample Output

216

30


最小生成树模板题


kruskal


#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <string>
#include <iostream>
#include <algorithm>
#include <list>
#include <set>
#include <stack>
#include <queue>
#include <map>
#include <bitset>
#include <vector>
#include <functional>
using namespace std;


#define ll long long 
#define mem(a, b) memset(a, b, sizeof(a))
#define debug() puts("FFFFFFFF!!!!");
const int maxn = 100;
const int inf = 0x3f3f3f3f;
int n;
int cnt;
int par[maxn];
struct edge {
        int u;
        int v;
        int cost;
}t[maxn];
bool cmp(edge a, edge b) {
        return a.cost < b.cost;
}
int find(int x) {
        if (x == par[x]) return x;
        return par[x] = find(par[x]);
}
int kruskal() {
        sort(t, t + cnt, cmp);
        int ans = 0;
        for (int i = 0; i <= n; i ++) {
                par[i] = i;
        }
        for (int i = 0; i < cnt; i ++) {
                edge e = t[i];
                if (find(e.u) != find(e.v)) {
                        int x = find(e.u);
                        int y = find(e.v);
                        par[x] = y;
                        ans += e.cost;
                }
        }
        return ans;
}
int main()
{
        int m, w;
        string s1, s2;
        while (cin >> n && n) {
                cnt = 0;
                for (int i = 1; i < n; i ++) {
                        cin >> s1 >> m;
                        for (int j = 0; j < m; j ++) {
                                cin >> s2 >> w;
                                int v = s2[0] - 'A' + 1;
                                t[cnt].u = i;
                                t[cnt].v = v;
                                t[cnt].cost = w;
                                cnt ++;
                        }
                }
                int ans = kruskal();
                cout << ans << endl;
        }
}

最小生成树入门:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html


内容概要:本文详细探讨了杯形谐波减速器的齿廓修形方法及寿命预测分析。文章首先介绍了针对柔轮与波发生器装配时出现的啮合干涉问题,提出了一种柔轮齿廓修形方法。通过有限元法装配仿真确定修形量,并对修形后的柔轮进行装配和运转有限元分析。基于Miner线性疲劳理论,使用Fe-safe软件预测柔轮寿命。结果显示,修形后柔轮装配最大应力从962.2 MPa降至532.7 MPa,负载运转应力为609.9 MPa,解决了啮合干涉问题,柔轮寿命循环次数达到4.28×10⁶次。此外,文中还提供了详细的Python代码实现及ANSYS APDL脚本,用于柔轮变形分析、齿廓修形设计、有限元验证和疲劳寿命预测。 适合人群:机械工程领域的研究人员、工程师,尤其是从事精密传动系统设计和分析的专业人士。 使用场景及目标:①解决杯形谐波减速器中柔轮与波发生器装配时的啮合干涉问题;②通过优化齿廓修形提高柔轮的力学性能和使用寿命;③利用有限元分析和疲劳寿命预测技术评估修形效果,确保设计方案的可靠性和可行性。 阅读建议:本文涉及大量有限元分析和疲劳寿命预测的具体实现细节,建议读者具备一定的机械工程基础知识和有限元分析经验。同时,读者可以通过提供的Python代码和ANSYS APDL脚本进行实际操作和验证,加深对修形方法和技术路线的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值