转载请注明出处,谢谢http://blog.youkuaiyun.com/ACM_cxlove?viewmode=contents by---cxlove
上场CF的C题是一个树的分治。。。
今天刚好又看到一题,就做了下
题意:一棵树,问两个点的距离<=k的点对数目。
http://poj.org/problem?id=1987
貌似是经典的点分治题。。。。。
看成有根树,那么这样的点对路径分为两种,1、过根节点,2、存在于某一棵子树当中。
显然情况2可以看成是一种子情况
对于1的统计,统计所有节点到根节点的距离,枚举+二分可以得到有多少个二元组的和<=k。
但是需要除掉两个点都在某一棵子树中的情况,所以枚举所有子树,同样是枚举+二分。
至于根的选择,选取树的重心。。。我是两次DFS,类似数形DP,求出所有子树的size,找到某一个结点,若删除这个结点,剩下的子树的size中最大的最小。
总体复杂度大概是nlgnlgn
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
const int N = 40005;
struct Edge{
int v,next,w;
}e[N<<1];
int tot,start[N],n,m,k,del[N],ans=0;
int size[N];
void _add(int u,int v,int w){
e[tot].v=v;e[tot].w=w;
e[tot].next=start[u];start[u]=tot++;
}
void add(int u,int v,int w){
_add(u,v,w);
_add(v,u,w);
}
void cal(int u,int pre){
size[u]=1;
for(int i=start[u];i!=-1;i=e[i].next){
int v=e[i].v;
if(v==pre||del[v]) continue;
cal(v,u);
size[u]+=size[v];
}
}
int newroot,maxsize,totalsize;
void dfs(int u,int pre){
int mx=0,sum=1;
for(int i=start[u];i!=-1;i=e[i].next){
int v=e[i].v;
if(v==pre||del[v]) continue;
dfs(v,u);
mx=max(mx,size[v]);
sum+=size[v];
}
mx=max(mx,totalsize-sum);
if(mx<maxsize){
maxsize=mx;
newroot=u;
}
}
int search(int r){
newroot=-1;maxsize=1<<30;
cal(r,-1);
totalsize=size[r];
dfs(r,-1);
return newroot;
}
int dist[N],idx;
vector<int>sub[N],all;
void gao(int u,int pre){
all.push_back(dist[u]);
sub[idx].push_back(dist[u]);
for(int i=start[u];i!=-1;i=e[i].next){
int v=e[i].v,w=e[i].w;
if(v==pre||del[v]) continue;
dist[v]=dist[u]+w;
gao(v,u);
}
}
void solve(int root){
root=search(root);
del[root]=1;
if(totalsize==1) return ;
idx=0;all.clear();
for(int i=start[root];i!=-1;i=e[i].next){
int v=e[i].v,w=e[i].w;
if(del[v]) continue;
sub[idx].clear();
dist[v]=w;
gao(v,-1);
sort(sub[idx].begin(),sub[idx].end());
idx++;
}
for(int i=0;i<idx;i++){
int pos;
for(int j=0;j<sub[i].size();j++){
pos=upper_bound(sub[i].begin(),sub[i].end(),k-sub[i][j])-sub[i].begin()-1;
if(pos>j) ans-=pos-j;
}
pos=upper_bound(sub[i].begin(),sub[i].end(),k)-sub[i].begin()-1;
if(pos>=0) ans+=pos+1;
}
sort(all.begin(),all.end());
for(int i=0;i<all.size();i++){
int pos=upper_bound(all.begin(),all.end(),k-all[i])-all.begin()-1;
if(pos>i) ans+=pos-i;
}
for(int i=start[root];i!=-1;i=e[i].next){
int v=e[i].v;
if(del[v]) continue;
solve(v);
}
}
int main(){
tot=0;memset(start,-1,sizeof(start));
scanf("%d%d",&n,&m);
for(int i=0;i<m;i++){
int u,v,w;char str[5];
scanf("%d%d%d%s",&u,&v,&w,str);
add(u,v,w);
}
scanf("%d",&k);
solve(1);
printf("%d\n",ans);
return 0;
}