POj 3259 Wormholes

在FJ的五座农场中,探索通过特殊路径和虫洞进行时间旅行的可能性,实现回到出发点前一秒的目标。每个农场包含田地、双向路径、单向返回时间的路径以及虫洞,挑战在于利用这些元素实现时间旅行。输入包括农场数量、田地数量、路径数量和虫洞数量,输出为是否能够成功实现时间旅行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Wormholes
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 21827 Accepted: 7772

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..N, M (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, F. F farm descriptions follow.
Line 1 of each farm: Three space-separated integers respectively: N, M, and W
Lines 2.. M+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path.
Lines M+2.. M+ W+1 of each farm: Three space-separated numbers ( S, E, T) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1.. F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

Hint

For farm 1, FJ cannot travel back in time.
For farm 2, FJ could travel back in time by the cycle 1->2->3->1, arriving back at his starting location 1 second before he leaves. He could start from anywhere on the cycle to accomplish this.

Source

考察点:
          最短路算法
#include <iostream>
#include <cstring>
using namespace std;
int statck[1000000];
int status[1000];
int sum[1000];
class num
{
    public:
    int end,val;
    int next;
}a[1000000];
int b[1000],res[1000];
int tag,n;
int INF=0x7fffffff;
int main()
{
    void deal(int k);
    int i,j,m,s,t,z,x,y,val;
    cin>>t;
    while(t--)
    {
        cin>>n>>m>>z;
        memset(b,-1,sizeof(b));
        j=0;
        for(i=0;i<=m-1;i++)
        {
            cin>>x>>y>>val;
            a[j].end=y;
            a[j].val=val;
            a[j].next=b[x];
            b[x]=j;
            j+=1;
            a[j].end=x;
            a[j].val=val;
            a[j].next=b[y];
            b[y]=j;
            j++;
        }
        for(i=0;i<=z-1;i++)
        {
            cin>>x>>y>>val;
            a[j].end=y;
            a[j].val=-1*val;
            a[j].next=b[x];
            b[x]=j;
            j++;
        }
        for(i=1;i<=n;i++)
        {
            memset(status,0,sizeof(status));
            memset(sum,0,sizeof(sum));
            tag=0;
            deal(i);
            if(tag==1)
            {
                cout<<"YES"<<endl;
                break;
            }
        }
        if(tag==0)
        {
            cout<<"NO"<<endl;
        }
    }
    return 0;
}
void deal(int k)
{
    int base,top;
    int i,j,x,xend;
    for(i=1;i<=n;i++)
    {
        res[i]=INF;
    }
    res[k]=0;
    base=top=0;
    statck[top++]=k;
    status[k]=1;
    sum[k]+=1;
    while(base<top)
    {
        x=statck[base];
        base++;
        status[x]=0;
        for(j=b[x];j!=-1;j=a[j].next)
        {
            if((res[x]+a[j].val)<res[a[j].end])
            {
                res[a[j].end]=(res[x]+a[j].val);
                if(res[k]<0)
                {
                    tag=1;
                    break;
                }
                if(status[a[j].end]==0)
                {
                    status[a[j].end]=1;
                    sum[a[j].end]+=1;
                    statck[top++]=a[j].end;
                    if(sum[a[j].end]>=n)
                    {
                        break;
                    }
                }  
            }
        }
        if(j!=-1)
        {
            break;
        }
    }

}

内容概要:本文系统介绍了基于C#(VS2022+.NET Core)与HALCON 24.11的工业视觉测量拟合技术,涵盖边缘提取、几何拟合、精度优化及工业部署全流程。文中详细解析了亚像素边缘提取、Tukey抗噪算法、SVD平面拟合等核心技术,并提供了汽车零件孔径测量、PCB焊点共面性检测等典型应用场景的完整代码示例。通过GPU加速、EtherCAT同步等优化策略,实现了±0.01mm级测量精度,满足ISO 1101标准。此外,文章还探讨了深度学习、量子启发式算法等前沿技术的应用前景。 适合人群:具备一定编程基础,尤其是熟悉C#和HALCON的工程师或研究人员,以及从事工业视觉测量与自动化检测领域的技术人员。 使用场景及目标:①学习如何使用C#和HALCON实现高精度工业视觉测量系统的开发;②掌握边缘提取、抗差拟合、3D点云处理等核心技术的具体实现方法;③了解工业部署中的关键技术,如GPU加速、EtherCAT同步控制、实时数据看板等;④探索基于深度学习和量子计算的前沿技术在工业视觉中的应用。 其他说明:本文不仅提供了详细的理论分析和技术实现,还附有完整的代码示例和实验数据,帮助读者更好地理解和实践。同时,文中提到的硬件选型、校准方法、精度验证等内容,为实际项目实施提供了重要参考。文章最后还给出了未来的技术演进方向和开发者行动建议,如量子-经典混合计算、自监督学习等,以及参与HALCON官方认证和开源社区的建议。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值