poj 3259 Wormholes

本文探讨了如何使用SPFA算法判断是否存在时间旅行的可能性,通过分析路径和虫洞的时间差,实现对负权环的检测,从而帮助农民约翰找到回到过去的方法。

题目连接

http://poj.org/problem?id=3259

Wormholes

Description

While exploring his many farms, Farmer John has discovered a number of amazing wormholes. A wormhole is very peculiar because it is a one-way path that delivers you to its destination at a time that is BEFORE you entered the wormhole! Each of FJ's farms comprises N (1 ≤ N ≤ 500) fields conveniently numbered 1..NM (1 ≤ M ≤ 2500) paths, and W (1 ≤ W ≤ 200) wormholes.

As FJ is an avid time-traveling fan, he wants to do the following: start at some field, travel through some paths and wormholes, and return to the starting field a time before his initial departure. Perhaps he will be able to meet himself :) .

To help FJ find out whether this is possible or not, he will supply you with complete maps to F (1 ≤ F ≤ 5) of his farms. No paths will take longer than 10,000 seconds to travel and no wormhole can bring FJ back in time by more than 10,000 seconds.

Input

Line 1: A single integer, FF farm descriptions follow. 
Line 1 of each farm: Three space-separated integers respectively: NM, and W 
Lines 2..M+1 of each farm: Three space-separated numbers (SET) that describe, respectively: a bidirectional path between S and E that requires T seconds to traverse. Two fields might be connected by more than one path. 
Lines M+2..M+W+1 of each farm: Three space-separated numbers (SET) that describe, respectively: A one way path from S to E that also moves the traveler back T seconds.

Output

Lines 1..F: For each farm, output "YES" if FJ can achieve his goal, otherwise output "NO" (do not include the quotes).

Sample Input

2
3 3 1
1 2 2
1 3 4
2 3 1
3 1 3
3 2 1
1 2 3
2 3 4
3 1 8

Sample Output

NO
YES

spfa判断负环。。

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<map>
using std::map;
using std::min;
using std::find;
using std::pair;
using std::queue;
using std::vector;
using std::multimap;
#define pb(e) push_back(e)
#define sz(c) (int)(c).size()
#define mp(a, b) make_pair(a, b)
#define all(c) (c).begin(), (c).end()
#define iter(c) __typeof((c).begin())
#define cls(arr, val) memset(arr, val, sizeof(arr))
#define cpresent(c, e) (find(all(c), (e)) != (c).end())
#define rep(i, n) for(int i = 0; i < (int)n; i++)
#define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
const int N = 510;
const int INF = 0x3f3f3f3f;
struct SPFA {
    struct edge { int to, w, next; }G[N * 10];
    bool vis[N];
    int tot, inq[N], head[N], dist[N];
    inline void init(int n) {
        tot = 0;
        rep(i, n + 1) {
            head[i] = -1;
            inq[i] = vis[i] = 0;
            dist[i] = INF;
        }
    }
    inline void add_edge(int u, int v, int w) {
        G[tot] = (edge){ v, w, head[u] }; head[u] = tot++;
    }
    inline void built(int m, int w) {
        int u, v, x;
        while(m--) {
            scanf("%d %d %d", &u, &v, &x);
            add_edge(u, v, x), add_edge(v, u, x);
        }
        while(w--) {
            scanf("%d %d %d", &u, &v, &x);
            add_edge(u, v, -x);
        }
    }
    inline bool spfa(int n, int s = 1) {
        queue<int> q;
        q.push(s);
        dist[s] = 0, vis[s] = true;
        while(!q.empty()) {
            int u = q.front(); q.pop();
            vis[u] = false;
            for(int i = head[u]; ~i; i = G[i].next) {
                edge &e = G[i];
                if(dist[e.to] > dist[u] + e.w) {
                    dist[e.to] = dist[u] + e.w;
                    if(!vis[e.to]) {
                        vis[e.to] = true;
                        q.push(e.to);
                        inq[e.to]++;
                    }
                }
                if(inq[e.to] > n) return true;
            }
        }
        return false;
    }
    inline void solve(int n, int m, int w) {
        init(n), built(m, w);
        puts(spfa(n) ? "YES" : "NO");
    }
}go;
int main() {
#ifdef LOCAL
    freopen("in.txt", "r", stdin);
    freopen("out.txt", "w+", stdout);
#endif
    int t, n, m, w;
    scanf("%d", &t);
    while(t--) {
        scanf("%d %d %d", &n, &m, &w);
        go.solve(n, m, w);
    }
    return 0;
}

转载于:https://www.cnblogs.com/GadyPu/p/4773490.html

农业作物成熟度实例分割数据集 一、基础信息 • 数据集名称:农业作物成熟度实例分割数据集 • 图片数量: 训练集:563张图片 验证集:161张图片 测试集:80张图片 总计:804张图片 • 训练集:563张图片 • 验证集:161张图片 • 测试集:80张图片 • 总计:804张图片 • 分类类别: bfullyripened: b类作物完全成熟状态 bgreen: b类作物绿色未成熟状态 bhalfripened: b类作物半成熟状态 lfullyripened: l类作物完全成熟状态 lgreen: l类作物绿色未成熟状态 lhalfripened: l类作物半成熟状态 • bfullyripened: b类作物完全成熟状态 • bgreen: b类作物绿色未成熟状态 • bhalfripened: b类作物半成熟状态 • lfullyripened: l类作物完全成熟状态 • lgreen: l类作物绿色未成熟状态 • lhalfripened: l类作物半成熟状态 • 标注格式:YOLO格式,包含实例分割多边形点标注,适用于实例分割任务。 • 数据格式:图片来源于农业图像数据库,细节清晰,适用于模型训练。 二、适用场景 • 农业AI监测系统开发:数据集支持实例分割任务,帮助构建能够自动识别作物部分并分类成熟度的AI模型,辅助农民进行精准农业管理。 • 精准农业应用研发:集成至农业智能平台,提供实时作物状态识别功能,优化灌溉、施肥和收获时间。 • 学术研究与创新:支持农业科学与人工智能交叉领域的研究,助力发表高水平农业AI论文。 • 农业教育与培训:数据集可用于农业院校或培训机构,作为学生学习作物识别和成熟度评估的重要资源。 三、数据集优势 • 精准标注与多样性:每张图片均经过精确标注,确保实例分割边界准确,类别分类正确。涵盖两种作物类型(b和l)和三种成熟度状态(完全成熟、绿色未成熟、半成熟),具有高度多样性,提升模型泛化能力。 • 任务适配性强:标注兼容主流深度学习框架(如YOLO等),可直接加载使用,支持实例分割任务,并可扩展到其他计算机视觉任务。 • 农业价值突出:专注于作物成熟度检测,为智能农业、自动化收获和作物健康监测提供关键数据支持,具有重要的实际应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值