#构造线性模型
a = tf.Variable(np.random.rand(1))
b = tf.Variable(np.random.rand(1))
y = a*X_data + b
#二次代价函数(损失函数) 均方值
loss = tf.losses.mean_squared_error(Y_data,y)
#设置学习率
lr = 0.2
#定义梯度下降优化器
optimizer = tf.train.GradientDescentOptimizer(lr)
#最小化损失函数
train = optimizer.minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
with tf.Session() as session:
session.run(init)
for i in range(100):
session.run(train)
if i%10 == 0 :
print("第%i次训练[a,b]的值为:"%i,session.run([a,b]))
predict_y = session.run(y)
plt.scatter(X_data,Y_data)
plt.plot(X_data,predict_y,color='r')
plt.show()