无人机遥感在农林信息提取中的实现方法与GIS融合应用

     原文>>> 无人机遥感在农林信息提取中的实现方法与GIS融合应用

        遥感技术作为一种空间大数据手段,能够从多时、多维、多地等角度,获取大量的农情数据。数据具有面状、实时、非接触、无伤检测等显著优势,是智慧农业必须采用的重要技术之一。本文梳理了我国目前无人机遥感在智慧农业信息提取的综合态势,对无人机平台的性能、机载传感器指标、地面传感器应用、农林遥感光谱指数、农林光谱建模方法进行了大量的分析。在此基础上,按照形态、生理生化、胁迫、估产等四大类信息提取目标,从理论和实践两方面进行了详细的分析。 遥感技术作为一种空间大数据手段,能够从多时、多维、多地等角度,获取大量的农情数据。数据具有面状、实时、非接触、无伤检测等显著优势,是智慧农业必须采用的重要技术之一。

本文梳理了我国目前无人机遥感在智慧农业信息提取的综合态势,对无人机平台的性能、机载传感器指标、地面传感器应用、农林遥感光谱指数、农林光谱建模方法进行了大量的分析。在此基础上,按照形态、生理生化、胁迫、估产等四大类信息提取目标,从理论和实践两方面进行了详细的分析。

其中,围绕着四大类信息,划分为十四个子专题:株数和株高、冠层覆盖度、作物倒伏、不同生育期状况、叶面积指数、作物系数、叶绿素含量、营养元素含量、异常因素胁迫、病虫害、作物衰老、净同化率、蛋白质含量、生物量。对每一个子信息都有相应的数据,涵盖三波段真彩色、多光谱和高光谱无人机数据,进行智慧信息提取的学习。

包括无人机平台和传感器等分析。按照作物形态、生理生化、作物胁迫和产量计算等4大专题,划分为株数和株高、冠层覆盖度、作物倒伏、不同生育期状况、叶面积指数、作物系数、叶绿素含量、营养元素含量、异常因素胁迫、病虫害、作物衰老、净同化率、蛋白质含量、生物量等主要环节。

无人机遥感在智慧农业信息提取中的实现方法体系图

第一章:综合态势分析

1.1 研究区及作物品种分析

(1)形态指标分析

(2)生理生化指标分析

(3)胁迫指标分析

(4)产量指标分析

(5)综合分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值