Spark 单机运行环境搭建

Spark 的安装配置:

1.打开一个 Linux 终端,在其中执行以下命令将 Spark 软件包解压到/usr/local 目录 中,并创建一个软链接文件指向 Spark 目录并修改目录的用户属性。

2.接下来开始配置 Spark 运行环境,相比而言 Spark 的配置更简单,所有配置文件均 位于 conf 目录。

3.使用 vi 编辑器修改/etc/profile 文件,在其中添加有关 Spark 的环境变量设置。

4.通过 source 命令使/etc/profile 的内容修改生效。注意:如果新开一个终端窗体, 需要在新终端重新执行一次 source 命令,除非重启动虚拟机才会全局有效。

5.初步测试一下配置好的 Spark 能否正常工作。

ps:如果一切正常的话,终端上会输出计算得到的 pi 近似值,这个值不固定,所以每次运 行输出的 pi 值是会变化的。

卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,主要用于图像、视频和自然语言处理等领域。CNN的基本结构包含卷积层(Convolutional Layer)、池化层(Pooling Layer)和全连接层(Fully Connected Layer)。 卷积层是CNN的核心,它通过卷积核(滤波器)对输入数据进行卷积操作,提取出特征信息。卷积核是一个小的矩阵,它通过滑动窗口的方式对输入数据进行卷积操作。卷积操作可以看作是一种特殊的加权求和,它将输入数据的局部区域与卷积核进行点乘,然后将点积结果相加得到一个输出值。通过改变卷积核的大小和数量,我们可以提取出不同的特征信息。通常,卷积层的输出被称为特征图Feature Map)。 池化层主要用于减小特征图的尺寸,降低计算复杂度。常见的池化操作有最大池化和平均池化。最大池化选取每个区域内的最大值作为输出,平均池化选取每个区域内的平均值作为输出。池化操作与卷积操作类似,也是通过滑动窗口的方式对输入数据进行操作。 全连接层是神经网络的最后一层,它将特征图转换为一个向量,并通过多层全连接网络进行分类或回归等任务。在CNN中,全连接层通常用于对特征进行分类。 CNN的训练过程主要包括前向传播和反向传播两个过程。前向传播是指将输入数据送入网络中,得到输出结果的过程。反向传播是指根据损失函数的梯度信息,从输出层向输入层逐层更新参数的过程。CNN通常使用梯度下降算法进行参数更新。 总之,CNN通过卷积操作和池化操作提取输入数据的特征信息,并通过全连接层进行分类或回归等任务。它在图像、视频和自然语言处理等领域具有广泛的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值