主流开源大模型基于Server适配PyTorch NPU推理指导- 语言模型推理性能测试

benchmark方法介绍

性能benchmark包括两部分。

  • 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。
  • 动态性能测试:评估在请求并发在一定范围内波动,且输入输出长度也在一定范围内变化时,模型的延迟和吞吐。该场景能模拟实际业务下动态的发送不同长度请求,能评估推理框架在实际业务中能支持的并发数。

性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。

代码目录如下:

benchmark_tools 
|--- modal_benchmark
    |--- modal_benchmark_parallel.py  # modal 评测静态性能脚本
    |--- utils.py
├── benchmark_parallel.py  # 评测静态性能脚本
├── benchmark_serving.py  # 评测动态性能脚本
├── generate_dataset.py   # 生成自定义数据集的脚本
├── benchmark_utils.py   # 工具函数集
├── benchmark.py         # 执行静态、动态性能评测脚本
├── requirements.txt       # 第三方依赖

目前性能测试已经支持投机推理能力。

静态benchmark验证

本章节介绍如何进行静态benchmark验证。

  1. 已经上传benchmark验证脚本到推理容器中。如果在步骤四 制作推理镜像步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。
  2. 进入benchmark_tools目录下,运行静态benchmark验证。
    cd benchmark_tools 

语言模型脚本相对路径是tools/llm_evaluation/benchmark_tools/benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。

python benchmark_parallel.py --backend openai --host ${docker_ip} --port ${port} --tokenizer /path/to/tokenizer  --epochs 5 --num-scheduler-steps 8 \
--parallel-num 1 4 8 16 32  --prompt-tokens 1024 2048 --output-tokens 128 256 --benchmark-csv benchmark_parallel.csv
  1. 参数说明

    • --backend:服务类型,支持tgi、vllm、mindspore、openai等后端。本文档使用的推理接口是openai。
    • --host&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值