集成算法简介
对于一个复杂任务来说,将多个专家的判断进行适当的综合所得出的判断,要比其中任何一个专家单独的判断好。
集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务等。
集成学习的结果通过投票法产生?即“少数服从多数”
代码
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from collections import Counter
#定义一些超参数
BATCHSIZE = 100
DOWNLOAD_MNIST = False
EPOCHES=20
LR=0.001
print("=========================================================================================")
#定义相关模型结构。这三个网络结构比较接近
class CNNet(nn.Module):
def __init__(self):
super(CNNet, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=5,stride=1)
self.pool1 = nn.MaxPool2d(kernel_size=2,stride=2)
self.conv2 = nn.Conv2d(16, 36, kernel_size=3,stride=1)
self.pool2 = nn.MaxPool2d(kernel_size=2,stride=2)
self.fc1 = nn.Linear(1296, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
#print(x.shanpe)
x = x.view(-1,36*6*6)
x = F.relu(self.fc2(F.relu(self.fc1(x))))
return x
print("===========================================================================================")
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=5)
self.pool1 = nn.MaxPool2d(kernel_size=2,stride=2)
self.conv2 = nn.Conv2d(16, 36, kernel_size=5)
#self.fc1 = nn.Linear(16*5*5,120)
self.pool2 = nn.MaxPool2d(kernel_size=2,stride=2)
self.aap = nn.AdaptiveAvgPool2d(1)
#self.fc2 = nn.Linear(120,84)
self.fc3 = nn.Linear(36, 10)
def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
#print(x.shape)
#x = x.view(-1,16*5*5)
x = self.aap(x)
#print(x.shape)
#x = F.relu(self.fc2(x))
x = x.view(x.shape[0], -1)
#print(x.shape)
x = self.fc3(x)
return x
print("=============================================================================================")
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(3, 6, kernel_size=5)
self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
out = F.relu(self.conv1(x))
out = F.max_pool2d(out, 2)
out = F.relu(self.conv2(out))
out = F.max_pool2d(out, 2)
out = out.view(out.size(0),-1)
out = F.relu(self.fc1(out))
out = F.max_pool2d(out, 2)
out = self.fc3(out)
return out
print("============================================================================================")
cfg = {
'VGG16': [64,64,'M',128, 128, 'M', 256, 256,256,'M', 512, 512,512,'M',512, 512,512,'M'],
'VGG19': [64,64,'M',128, 128, 'M', 256, 256,256,256,'M', 512, 512,512,512,'M',512, 512,512,512,'M']
}
class VGG(nn.Module):
def __init__(self):
super(VGG, self).__init__()
self.features = self._make_layers(cfg['VGG16'])
self.classifier = nn.Linear(512, 10)
def forward(self, x):
out = self.features(x)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out
def _make_layers(self, cfg):
layers = []
in_channels = 3
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
nn.BatchNorm2d(x),
nn.ReLU(inplace=True)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)
print("===============================================================================")
#导入数据
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
#Data
print("==> Preparing data...")
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck')
#Model
print("==> Building model...")
net1 = CNNet
net2 = Net()
net3 = LeNet
net4 = VGG('VGG16')
print("===============================================================================================")
#集成方法
#把三个网络模型放在一个列表里
mlps =[net1.to(device), net2.to(device), net3.to(device), net4.to(device)]
optimizer = torch.optim.Adam([{'params':mlps.parameters()} for mlp in mlps],Lr = LR)
loss_function=nn.CrossEntropyLoss()
for ep in range(EPOCHES):
for img,label in trainloader:
img,label=img.to(device),label.to(device)
optimizer.zero_grad()
for mlp in mlps:
mlp.train()
out=mlp(img)
loss=loss_function(out,label)
loss.backward()
optimizer.step()
pre = []
vote_correct=0
mlps_correct=[0 for i in range(len(mlps))]
for img,label in testloader:
img,label=img.to(device),label.to(device)
for i,mlp in enumerate(mlps):
mlp.eval()
out=mlp(img)
_,prediction=torch.max(out,1)
pre_num=prediction.cpu().numpy()
mlps_correct[i]+=(pre_num==label.cpu().numpy()).sum()
pre.append(pre_num)
arr=np.array(pre)
pre.clear()
result=[Counter(arr[:,i]).most_common(1)[0][0] for i in range(BATCHSIZE)]
vote_correct+=(result == label.cpu().numpy()).sum()
print('epoch:' + str(ep)+'集成模型的正确率'+str(vote_correct/len(testloader)))
for idx,coreect in enumerate(mlps_correct):
print('模型'+str(idx)+'的正确率为:'+str(coreect/len(testloader)))
print("========================================================================================")
mlps = [net4.to(device)]
optimizer=torch.optim.Adam([{'params':mlp.parameters()} for mlp in mlps],Lr=LR)
loss_function=nn.CrossEntropyLoss()
for ep in range(EPOCHES):
for img,label in trainloader:
img,label=img.to(device),label.to(device)
optimizer.zero_grad()
for mlp in mlps:
mlp.train()
out=mlp(img)
loss=loss_function(out,label)
loss.backward()
optimizer.setp()
pre=[]
vote_correct=0
mlps_correct=[0 for i in range(len(mlps))]
for img,label in testloader:
img,label=img.to(device),label.to(device)
for i,mlp in enumerate(mlps):
mlp.eval()
out=mlp(img)
_,prediction=torch.max(out,1)
pre_num=prediction.cpu().numpy()
mlps_correct[i]+=(pre_num==label.cpu().numpy()).sum()
pre.append(pre_num)
arr=np.array(pre)
pre.clear()
result=[Counter(arr[:,i]).most_common(1)[0][0] for i in range(BATCHSIZE)]
vote_correct+=(result == label.cpu().numpy()).sum()
#print('epoch:'+str(ep)+'集成模型的正确率'+str(vote_correct/len(testloader)))
for idx,coreect in enumerate(mlps_correct):
print("VGG16模型迭代"+str(ep)+"次的正确率为:"+str(coreect/len(testloader)))