准备数据
import numpy as np
import torch
#导入pytorch内置的mnist数据
from torchvision.datasets import mnist
#import torchvision
#导入预处理模块
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
# import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import mnist
from torch import nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
#导入nn及优化器
print("==========================================================================")
#定义一些超参数
train_batch_size = 64
test_batch_size = 128
learning_rate = 0.01
nun_epochs = 20
print("============================================================================")
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.5],[0.5])])
#定义预处理函数
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.5],[0.5])])
#下载数据,并对数据进行预处理
train_dataset = mnist.MNIST(root='../data/', train=True, transform=transform, download=True)
test_dataset = mnist.MNIST(root='../data/', train=False, transform=transform)
#得到一个生成器
train_loader = DataLoader(train_dataset, batch_size=train_batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=test_batch_size, shuffle=True)
print("===============================================================================")
examples = enumerate(train_loader)
batch_idx, (example_data, example_target) = next(examples)
example_data.shape
#可视化源数据
import matplotlib.pyplot as plt
examples = enumerate(test_loader)
batch_idx, (example_data, example_target) = next(examples)
fig = plt.figure()
for i in range(6):
plt.subplot(2, 3, i+1)
plt.tight_layout()
plt.imshow(example_data[i][0], cmap='gray',interpolation='none')
plt.title('Ground Truth: {}'.format(example_target[i]))
plt.xticks([])
plt.yticks([])
#构建模型
class Net(nn.Module):
def __init__(self,in_dim,n_hidden_1,n_hidden_2,out_dim):
super(Net,self).__init__()
self.flatten = nn.Flatten()
self.layer1 = nn.Sequential(nn.Linear(in_dim,n_hidden_1),nn.BatchNorm1d(n_hidden_1))
self.layer2 = nn.Sequential(nn.Linear(n_hidden_1,n_hidden_2),nn.BatchNorm1d(n_hidden_2))
self.out = nn.Sequential(nn.Linear(n_hidden_2,out_dim))
def forward(self,x):
x=self.flatten(x)
x=F.relu(self.layer1(x))
x=F.relu(self.layer2(x))
x=F.softmax(self.out(x),dim=1)
return x
print("=================================================================================")
lr =0.01
momentum=0.9
#实例化模型
device = torch.device("cuda:0"if torch.cuda.is_available()else "cpu")
model = Net(28*28,300,100,10)
model.to(device)
#定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(),lr=lr,momentum=momentum)
#训练模型
losses = []
acces = []
eval_losses=[]
eval_acces = []
writer = SummaryWriter(log_dir='logs',comment='train-loss')
for epoch in range(nun_epochs):
train_loss=0
train_acc=0
model.train()
#动态修改参数学习率
if epoch%5==0:
optimizer.param_groups[0]['lr']*=0.9
print("学习率:{:.6f}".format(optimizer.param_groups[0]["lr"]))
for img ,label in train_loader:
img=img.to(device)
label=label.to(device)
#正向传播
out = model(img)
loss = criterion(out,label)
#反向传播
optimizer.zero_grad()
loss.backward()
optimizer.step()
#记录误差
train_loss += loss.item()
#保存loss的数据与epoch数值
writer.add_scalar("Train",train_loss/len(train_loader),epoch)
#计算分类的准确率
_,pred = out.max(1)
num_correct = (pred==label).sum().item()
acc=num_correct / img.shape[0]
train_acc += acc
losses.append(train_loss/len(train_loader))
acces.append(train_acc/len(train_loader))
#在测试集上测试结果
eval_loss=0
eval_acc=0
#net.eval()将模型改为预测模式
model.eval()
for img ,label in test_loader:
img=img.to(device)
label=label.to(device)
img = img.view(img.size(0),-1)
out = model(img)
loss = criterion(out,label)
#记录误差
eval_loss +=loss.item()
#记录准确率
_,pred = out.max(1)
num_correct = (pred==label).sum().item()
acc=num_correct / img.shape[0]
eval_acc += acc
eval_losses.append(eval_loss/len(test_loader))
eval_acces.append(eval_acc / len(test_loader))
print("epoch:{},Train Loss:{:.4f},Train Acc:{:.4f},Test Loss:{:.4f},Test Acc:{:.4f}".format(epoch,train_loss / len(train_loader),train_acc / len(train_loader),eval_loss / len(test_loader),eval_acc / len(test_loader)))