动态规划 —— 完全背包问题(题集)

完全背包的四大经典模型

✅ 模型 1:最值模型 - 求最少硬币数(LeetCode 322)

🧠 场景:凑出目标金额,最少需要多少硬币?

int coinChange(vector<int>& coins, int amount) {
    const int INF = amount + 1;
    vector<int> dp(amount + 1, INF);
    dp[0] = 0;
    for (int coin : coins)
        for (int j = coin; j <= amount; ++j)
            dp[j] = min(dp[j], dp[j - coin] + 1);
    return dp[amount] == INF ? -1 : dp[amount];
}

📝 示例:coins = {1, 2, 5}, amount = 11 → 输出:3(5 + 5 + 1)


✅ 模型 2:计数模型 - 凑出金额的组合数(LeetCode 518)

🧠 场景:凑出目标金额,有多少种组合方式?

int change(int amount, vector<int>& coins) {
    vector<int> dp(amount + 1);
    dp[0] = 1;
    for (int coin : coins)
        for (int j = coin; j <= amount; ++j)
            dp[j] += dp[j - coin];
    return dp[amount];
}

📝 示例:coins = {1, 2, 5}, amount = 5 → 输出:4

(四种组合:5, 2+2+1, 2+1+1+1, 1+1+1+1+1)


✅ 模型 3:可行性模型 - 是否能正好凑出金额

🧠 场景:判断某个金额是否能被某些硬币正好凑出

bool canMakeAmount(int amount, vector<int>& coins) {
    vector<bool> dp(amount + 1);
    dp[0] = true;
    for (int coin : coins)
        for (int j = coin; j <= amount; ++j)
            dp[j] = dp[j] || dp[j - coin];
    return dp[amount];
}

📝 示例:coins = {2, 4}, amount = 7 → 输出:false


✅ 模型 4:路径模型 - 恢复最少硬币的选取路径

🧠 场景:不仅要求最少硬币数,还想知道具体用的哪些硬币

vector<int> coinChangePath(vector<int>& coins, int amount) {
    const int INF = amount + 1;
    vector<int> dp(amount + 1, INF);
    vector<int> prev(amount + 1, -1);
    dp[0] = 0;

    for (int coin : coins)
        for (int j = coin; j <= amount; ++j)
            if (dp[j] > dp[j - coin] + 1) {
                dp[j] = dp[j - coin] + 1;
                prev[j] = j - coin;
            }

    if (dp[amount] == INF) return {}; // 无解

    // 回溯路径
    vector<int> res;
    for (int cur = amount; cur > 0; cur = prev[cur])
        res.push_back(cur - prev[cur]);
    return res;
}

📝 示例:

• 输入:coins = {1, 2, 5}, amount = 11

• 输出:{5, 5, 1}(一组可能的解)


📌 总结对比表

模型

场景

状态表示

转移逻辑

最值模型

求最少/最多个数/价值

dp[j] 最小/最大

dp[j] = min(dp[j], dp[j - w] + v)

计数模型

统计组合种类

dp[j] 为方案数

dp[j] += dp[j - w]

可行性模型

判断是否可达

dp[j] 为 bool

`dp[j] = dp[j]

路径模型

恢复选法路径

dp[j] + 前驱

额外记录 prev[j],回溯

零钱兑换 

322. 零钱兑换 - 力扣(LeetCode)

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3
输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

提示:

  • 1 <= coins.length <= 12
  • 1 <= coins[i] <= 231 - 1
  • 0 <= amount <= 104

思路

dp[i] 表示凑出金额 i 所需的最少硬币数,每个硬币个数都是无限的,因此本题是一个完全背包dp。

外层遍历物品(在本题中是硬币)内层遍历背包大小,完全背包是从小到大遍历

递推公式:dp[i] = min(dp[i], dp[i - coin] + 1);   本质上还是选不选硬币coin,在两种选择中选出较小值。 思路较为简单因此很容易得出代码

代码

class Solution {
public:
    int coinChange(vector<int>& coins, int amount) {
        const int INF = amount + 1; // 初始化为一个足够大的值
        vector<int> dp(amount + 1, INF);
        dp[0] = 0; // 凑出金额 0,需要 0 个硬币

        for (int coin : coins) {
            for (int i = coin; i <= amount; ++i) {
                dp[i] = min(dp[i], dp[i - coin] + 1);
            }
        }

        return dp[amount] == INF ? -1 : dp[amount];
    }
};

 

518. 零钱兑换 II - 力扣(LeetCode) 

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。

假设每一种面额的硬币有无限个。 

题目数据保证结果符合 32 位带符号整数。

    示例 1:

    输入:amount = 5, coins = [1, 2, 5]
    输出:4
    解释:有四种方式可以凑成总金额:
    5=5
    5=2+2+1
    5=2+1+1+1
    5=1+1+1+1+1
    

    示例 2:

    输入:amount = 3, coins = [2]
    输出:0
    解释:只用面额 2 的硬币不能凑成总金额 3 。
    

    示例 3:

    输入:amount = 10, coins = [10] 
    输出:1

    思路

    本题就是一个计数模型了,dp[i] 表示凑出金额为 i 的组合数。 dp[i] 表示:凑出金额 i 的组合数。

    然后继续外层遍历物品,内层遍历背包容器,完全背包内层顺序便利。然后可以得出代码

    代码

    class Solution {
    public:
        int change(int amount, vector<int>& coins) {
            int n = coins.size();
            vector<unsigned int> dp(amount + 1);
            dp[0] = 1;
            for (int coin : coins) {
                for (int j = coin; j <= amount; j++) {
                    dp[j] += dp[j - coin];
                }
            }
            return dp[amount];
        }
    };

    其他例题

    279. 完全平方数
     

    给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

    完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,149 和 16 都是完全平方数,而 3 和 11 不是。

    示例 1:

    输入:n = 12
    输出:3 
    解释:12 = 4 + 4 + 4

    示例 2:

    输入:n = 13
    输出:2
    解释:13 = 4 + 9

     

    提示:

    • 1 <= n <= 104

    思路

    dp[i] 表示和为 i 所需的最少完全平方数的个数。dp[i] = min(dp[i], dp[i - j*j] + 1);

    代码

    class Solution {
    public:
        int numSquares(int n) {
            vector<int> dp(n + 1, INT_MAX);
            dp[0] = 0;
    
            for (int i = 1; i <= n; i++) {
                for (int j = 1; j * j <= i; j++) {
                    dp[i] = min(dp[i], dp[i - j * j] + 1);
                }
            }
            return dp[n];
        }
    };

     

    1449. 数位成本和为目标值的最大数字

    思路

    设 dp[i] 表示「总花费为 i 时,最多可以构造多少位数字。我们的目标是得到 dp[target] —— 最多可以拼出多少位数。遍历每个 i = 1 ~ target,然后遍历所有数字 d = 1 ~ 9(用下标 0~8 表示),尝试用数字 d 拼出新状态:

    if (i >= cost[d] && dp[i - cost[d]] != -1) {
        dp[i] = max(dp[i], dp[i - cost[d]] + 1);
    }

    含义是:

    如果我当前的预算是 i,想加入一个代价为 cost[d] 的数字 d+1,那么我之前的状态得是 i - cost[d]。dp[i - cost[d]] + 1 表示在这个新状态下,数字位数增加了一个。

    随后用贪心优先选择大的数填充字符串。

    代码

    class Solution {
    public:
        string largestNumber(vector<int>& cost, int target) {
            vector<int> dp(target + 1, -1); // dp[i] 表示成本为 i 时能构造的最大位数
        dp[0] = 0;
    
        // 完全背包:构造最多的位数
        for (int t = 1; t <= target; ++t) {
            for (int d = 0; d < 9; ++d) {
                if (t >= cost[d] && dp[t - cost[d]] != -1) {
                    dp[t] = max(dp[t], dp[t - cost[d]] + 1);
                }
            }
        }
    
        if (dp[target] < 0) return "0";
    
        // 反向构造最大数(贪心,尽量从9开始选)
        string res = "";
        int t = target;
        for (int d = 8; d >= 0; --d) {
            while (t >= cost[d] && dp[t] == dp[t - cost[d]] + 1) {
                res += char('1' + d);
                t -= cost[d];
            }
        }
    
        return res;
        }
    };

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值