3.21代码随想录打卡第二十三天

准备:贪心算法理论基础

https://programmercarl.com/%E8%B4%AA%E5%BF%83%E7%AE%97%E6%B3%95%E7%90%86%E8%AE%BA%E5%9F%BA%E7%A1%80.html 

455.分发饼干

(1)题目描述:

(2)解题思路:

class Solution {
public:
    int findContentChildren(vector<int>& g, vector<int>& s) {
        sort(g.begin(), g.end());
        sort(s.begin(), s.end());
        int index = s.size() - 1; // 饼干数组的下标
        int result = 0;
        for (int i = g.size() - 1; i >= 0; i--) { // 遍历胃口
            if (index >= 0 && s[index] >= g[i]) { // 遍历饼干
                result++;
                index--;
            }
        }
        return result;
    }
};

(3)总结:

1.这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩。
2.先排序然后从后向前遍历(也可以从前向后)

3.注: 必须是先遍历的胃口,再遍历的饼干,如果反过来会出错(如下图)

376. 摆动序列

(1)题目描述:

(2)解题思路:

class Solution {
public:
    int dp[1005][2];
    int wiggleMaxLength(vector<int>& nums) {
        memset(dp, 0, sizeof dp);
        dp[0][0] = dp[0][1] = 1;
        for (int i = 1; i < nums.size(); ++i) {
            dp[i][0] = dp[i][1] = 1;
            for (int j = 0; j < i; ++j) {
                if (nums[j] > nums[i]) dp[i][1] = max(dp[i][1], dp[j][0] + 1);
            }
            for (int j = 0; j < i; ++j) {
                if (nums[j] < nums[i]) dp[i][0] = max(dp[i][0], dp[j][1] + 1);
            }
        }
        return max(dp[nums.size() - 1][0], dp[nums.size() - 1][1]);
    }
};

(3)总结:

1.三种情况:
上下坡中有平坡
数组首尾两端
单调坡中有平坡
2.上下坡中有平坡

 删左面三个 2 的规则,那么 当 prediff = 0 && curdiff < 0 也要记录一个峰值,因为他是把之前相同的元素都删掉留下的峰值
所以我们记录峰值的条件应该是: (preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)
2.数组首尾两端

 针对序列[2,5],可以假设为[2,2,5],这样它就有坡度了即 preDiff = 0,针对以上情形,result 初始为 1(默认最右面有一个峰值),此时 curDiff > 0 && preDiff <= 0,那么 result++(计算了左面的峰值),最后得到的 result 就是 2(峰值个数为 2 即摆动序列长度为 2)
3.单调坡中有平坡

 结果是 2,因为 单调中的平坡 不能算峰值(即摆动)。我们只需要在 这个坡度 摆动变化的时候,更新 prediff 就行,这样 prediff 在 单调区间有平坡的时候 就不会发生变化,造成我们的误判。

53. 最大子序和

(1)题目描述:

(2)解题思路:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        int result = INT32_MIN;
        int count = 0;
        for (int i = 0; i < nums.size(); i++) {
            count += nums[i];
            if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
                result = count;
            }
            if (count <= 0) count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
        }
        return result;
    }
};

(3)总结:

1.只要连续和目前不是负数就可一直往后加(若变为负数则否去它,从新的正数开始)
2.只需记录最大子序和,不要求输出是从哪个位置开始哪个位置结束

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值