151.翻转字符串里的单词
(1)题目描述:

(2)解题思路:
1.简单的反转字符串功能
// 反转字符串s中左闭右闭的区间[start, end]
void reverse(string& s, int start, int end) {
for (int i = start, j = end; i < j; i++, j--) {
swap(s[i], s[j]);
}
}
2.去除冗余空格
void removeExtraSpaces(string& s) {//去除所有空格并在相邻单词之间添加空格, 快慢指针。
int slow = 0; //整体思想参考https://programmercarl.com/0027.移除元素.html
for (int i = 0; i < s.size(); ++i) { //
if (s[i] != ' ') { //遇到非空格就处理,即删除所有空格。
if (slow != 0) s[slow++] = ' '; //手动控制空格,给单词之间添加空格。slow != 0说明不是第一个单词,需要在单词前添加空格。
while (i < s.size() && s[i] != ' ') { //补上该单词,遇到空格说明单词结束。
s[slow++] = s[i++];
}
}
}
s.resize(slow); //slow的大小即为去除多余空格后的大小。
}
(3)总结:
1.空间复杂度是O(1)是在原本的字符串中改变
2.只有在slow不位于最开头时,才会向slow中手动填空格,fast指针忽视所有空格,向slow指针位置填值
3.先整体反转字符串,再反转各个单词
class Solution {
public:
void reverse(string& s, int start, int end){ //翻转,区间写法:左闭右闭 []
for (int i = start, j = end; i < j; i++, j--) {
swap(s[i], s[j]);
}
}
void removeExtraSpaces(string& s) {//去除所有空格并在相邻单词之间添加空格, 快慢指针。
int slow = 0; //整体思想参考https://programmercarl.com/0027.移除元素.html
for (int i = 0; i < s.size(); ++i) { //
if (s[i] != ' ') { //遇到非空格就处理,即删除所有空格。
if (slow != 0) s[slow++] = ' '; //手动控制空格,给单词之间添加空格。slow != 0说明不是第一个单词,需要在单词前添加空格。
while (i < s.size() && s[i] != ' ') { //补上该单词,遇到空格说明单词结束。
s[slow++] = s[i++];
}
}
}
s.resize(slow); //slow的大小即为去除多余空格后的大小。
}
string reverseWords(string s) {
removeExtraSpaces(s); //去除多余空格,保证单词之间之只有一个空格,且字符串首尾没空格。
reverse(s, 0, s.size() - 1);
int start = 0; //removeExtraSpaces后保证第一个单词的开始下标一定是0。
for (int i = 0; i <= s.size(); ++i) {
if (i == s.size() || s[i] == ' ') { //到达空格或者串尾,说明一个单词结束。进行翻转。
reverse(s, start, i - 1); //翻转,注意是左闭右闭 []的翻转。
start = i + 1; //更新下一个单词的开始下标start
}
}
return s;
}
};
卡码网:55.右旋转字符串
(1)题目描述:


(2)解题思路:
1.版本一:对应下方总结
// 版本一
#include<iostream>
#include<algorithm>
using namespace std;
int main() {
int n;
string s;
cin >> n;
cin >> s;
int len = s.size(); //获取长度
reverse(s.begin(), s.end()); // 整体反转
reverse(s.begin(), s.begin() + n); // 先反转前一段,长度n
reverse(s.begin() + n, s.end()); // 再反转后一段
cout << s << endl;
}
2.版本二:对应下方总结
// 版本二
#include<iostream>
#include<algorithm>
using namespace std;
int main() {
int n;
string s;
cin >> n;
cin >> s;
int len = s.size(); //获取长度
reverse(s.begin(), s.begin() + len - n); // 先反转前一段,长度len-n ,注意这里是和版本一的区别
reverse(s.begin() + len - n, s.end()); // 再反转后一段
reverse(s.begin(), s.end()); // 整体反转
cout << s << endl;
}
(3)总结:
1.通过 整体倒叙,把两段子串顺序颠倒,两个段子串里的的字符在倒叙一把,负负得正,这样就不影响子串里面字符的顺序了

2.第二种思路:先局部反转再再调换位置

28.实现 strStr()
(1)题目描述:

(2)准备:
1.KMP算法是什么:KMP的主要思想是当出现字符串不匹配时,可以知道一部分之前已经匹配的文本内容,可以利用这些信息避免从头再去做匹配了。

2.前缀表就是告知下一步匹配模式串跳到哪个位置,next数组就是一个前缀表,前缀表是用来回退的,它记录了模式串与主串(文本串)不匹配的时候,模式串应该从哪里开始重新匹配。
3.上图f无法与文本串中的b匹配,那就重新寻找模式串中的b与之匹配。
4.前缀是什么:指不包含最后一个字符的所有以第一个字符开头的连续子串(如aabaaf的前缀有a、aa、aab、aaba、aabaa)
5.后缀是什么:指不包含第一个字符的所有以最后一个字符结尾的连续子串
6.最长相等前后缀

那么aabaaf的前缀表就是010120
2表示最长相等前后缀的长度,所以跳到了字符串中下标为 2的位从而找到了b

7.next数组就可以是前缀表,但是很多实现都是把前缀表统一减一(右移一位,初始位置为-1)之后作为next数组。

(3)解题思路:
class Solution {
public:
void getNext(int* next, const string& s) {
int j = 0;
next[0] = 0;
for(int i = 1; i < s.size(); i++) {
while (j > 0 && s[i] != s[j]) {
j = next[j - 1];
}
if (s[i] == s[j]) {
j++;
}
next[i] = j;
}
}
int strStr(string haystack, string needle) {
if (needle.size() == 0) {
return 0;
}
vector<int> next(needle.size());
getNext(&next[0], needle);
int j = 0;
for (int i = 0; i < haystack.size(); i++) {
while(j > 0 && haystack[i] != needle[j]) {
j = next[j - 1];
}
if (haystack[i] == needle[j]) {
j++;
}
if (j == needle.size() ) {
return (i - needle.size() + 1);
}
}
return -1;
}
};
(4)总结:
1.next数组可以有三种写法(普通前缀表、前缀表右移补-1或前缀表中数均减1)(最后一种跳到b是找表中倒数第二个数(为1)+1为2跳到下标为二的地方)

2.j表示前缀末尾i表示后缀末尾(j在ⅰ前)
3.前后缀不相同的情况:遇见冲突ⅰ和j不匹配时看前一位j回退到前一位
4.前后缀相同的情况(如都为a)
void getNext(int* next, const string& s) {
int j = 0;
next[0] = 0;
for(int i = 1; i < s.size(); i++) {
while (j > 0 && s[i] != s[j]) { // j要保证大于0,因为下面有取j-1作为数组下标的操作
j = next[j - 1]; // 注意这里,是要找前一位的对应的回退位置了
}
if (s[i] == s[j]) {
j++;
}
next[i] = j;
}
}
459.重复的子字符串
(1)题目描述:

(2)解题思路:
1.移动匹配
class Solution {
public:
bool repeatedSubstringPattern(string s) {
string t = s + s;
t.erase(t.begin()); t.erase(t.end() - 1); // 掐头去尾
if (t.find(s) != std::string::npos) return true; // r
return false;
}
};
2.KMP前缀表(不减一)
class Solution {
public:
void getNext (int* next, const string& s){
next[0] = 0;
int j = 0;
for(int i = 1;i < s.size(); i++){
while(j > 0 && s[i] != s[j]) {
j = next[j - 1];
}
if(s[i] == s[j]) {
j++;
}
next[i] = j;
}
}
bool repeatedSubstringPattern (string s) {
if (s.size() == 0) {
return false;
}
int next[s.size()];
getNext(next, s);
int len = s.size();
if (next[len - 1] != 0 && len % (len - (next[len - 1] )) == 0) {
return true;
}
return false;
}
};
(3)总结:
1.移动匹配
abcabc,内部由重复的子串组成,那么这个字符串的结构一定是这样的,也就是由前后相同的子串组成。

那么既然前面有相同的子串,后面有相同的子串,用 s + s,这样组成的字符串中,后面的子串做前串,前面的子串做后串,就一定还能组成一个s

2.如果有一个字符串s,在 s + s 拼接后, 不算首尾字符,如果能凑成s字符串,说明s 一定是重复子串组成
3.用KMP方法

