什么是递归
在C语⾔中,递归就是函数⾃⼰调⽤⾃⼰。
#include <stdio.h>
int main()
{
printf("hehe\n");
main();//main函数中⼜调⽤了main函数
return 0;
}
上述就是⼀个简单的递归程序,只不过上⾯的递归只是为了演⽰递归的基本形式,不是为了解决问 题,代码最终也会陷⼊死递归,导致栈溢出(Stackoverflow)。
递归的思想
把⼀个⼤型复杂问题层层转化为⼀个与原问题相似,但规模较⼩的⼦问题来求解,直到⼦问题不能再被拆分,递归就结束了。所以递归的思考⽅式就是把⼤事化⼩的过程。
递归中的递就是递推的意思,归就是回归的意思。
递归的限制条件
递归在书写的时候,有2个必要条件:
- 递归存在限制条件,当满⾜这个限制条件的时候,递归便不再继续。
- 每次递归调⽤之后越来越接近这个限制条件。
在下⾯的例⼦中,我们逐步体会这2个限制条件。
递归举例
举例1:求n的阶乘
我们知道n的阶乘的公式: n! = n∗(n−1)!
这样的思路就是把⼀个较⼤的问题,转换为⼀个与原问题相似,但规模较⼩的问题来求解的。
将其写成函数如下:
int Fact(int n)
{
if(n==0)
return 1;
else
return n*Fact(n-1);
}
测试:
#include <stdio.h>
int Fact(int n)
{
if(n==0)
return 1;
else
return n*Fact(n-1);
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fact(n);
printf("%d\n", ret);
return 0;
}
注意n不能太大,否则存在溢出的情况。
举例2:顺序打印⼀个整数的每⼀位
如果n是个位数,n的每⼀位就是n⾃⼰,如果n的位数超过1的话,就得拆分每⼀位。
1234%10就能得到4,然后1234/10得到123,这就相当于去掉了4 然后继续对123%10,就得到了3,再除10去掉3,以此类推,不断的 %10 和 /10 操作,直到1234的每⼀位都得到,但是这⾥得到的数字顺序是倒着的。
Print(n)
如果n是1234,那表⽰为
Print(1234) //打印1234的每⼀位
其中1234中的4可以通过%10得到,那么
Print(1234)就可以拆分为两步:
1. Print(1234/10) //打印123的每⼀位
2. printf(1234%10) //打印4 完成上述2步,那就完成了1234每⼀位的打印
那么Print(123)⼜可以拆分为
Print(123/10) + printf(123%10)
直到被打印的数字变成⼀位数的时候,就不需要再拆分,递归结束。
void Print(int n)
{
if(n>9)
{
Print(n/10);
}
printf("%d ", n%10);
}
int main()
{
int m = 0;
scanf("%d", &m);
Print(m);
return 0;
}
递归与迭代
在上面的举例1中,Fact函数是可以产⽣正确的结果,但是在递归函数调⽤的过程中涉及⼀些运⾏时的开销。
在C语⾔中每⼀次函数调⽤,都需要为本次函数调⽤在内存的栈区,申请⼀块内存空间来保存函数调⽤期间的各种局部变量的值,这块空间被称为运⾏时堆栈,或者函数栈帧。
函数不返回,函数对应的栈帧空间就⼀直占⽤,所以如果函数调⽤中存在递归调⽤的话,每⼀次递归函数调⽤都会开辟属于⾃⼰的栈帧空间,直到函数递归不再继续,开始回归,才逐层释放栈帧空间。 所以如果采⽤函数递归的⽅式完成代码,递归层次太深,就会浪费太多的栈帧空间,也可能引起栈溢出(stackoverflow)的问题。
所以如果不想使⽤递归,就得想其他的办法,通常就是迭代的⽅式(通常就是循环的⽅式)。
⽐如:计算n的阶乘,也是可以产⽣1~n的数字累计乘在⼀起的。
int Fact(int n)
{
int i = 0;
int ret = 1;
for(i=1; i<=n; i++)
{
ret *= i;
}
return ret;
}
上述代码效率是⽐递归的⽅式更好的。
事实上,我们看到的许多问题是以递归的形式进⾏解释的,这只是因为它⽐⾮递归的形式更加清晰, 但是这些问题的迭代实现往往⽐递归实现效率更⾼。 当⼀个问题⾮常复杂,难以使⽤迭代的⽅式实现时,此时递归实现的简洁性可以补偿它所带来的运⾏时开销。
举例3:求第n个斐波那契数
计算第n个斐波那契数,是不适合使⽤递归求解的,但是斐波那契数的问题通过是使⽤递归的形式描述的,如下:
int Fib(int n)
{
if(n<=2)
return 1;
else
return Fib(n-1)+Fib(n-2);
}
#include <stdio.h>
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fib(n);
printf("%d\n", ret);
return 0;
}
当我们n输⼊为50的时候,需要很⻓时间才能算出结果,说明递归的写法是⾮常低效的。因为递归程序会不断的展开,在展开的过程中,我们很容易就能发现,在递归的过程中会有重复计算,⽽且递归层次越深,冗余计算就会越多。
我们可以进行如下测试:
#include <stdio.h>
int count = 0;
int Fib(int n)
{
if(n == 3)
count++;//统计第3个斐波那契数被计算的次数
if(n<=2)
return 1;
else
return Fib(n-1)+Fib(n-2);
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fib(n);
printf("%d\n", ret);
printf("\ncount = %d\n", count);
return 0;
}
结果如下:
这⾥我们看到了,在计算第40个斐波那契数的时候,使⽤递归⽅式,第3个斐波那契数就被重复计算了 39088169次,这些计算是⾮常冗余的。所以斐波那契数的计算,使⽤递归是⾮常不明智的,我们就得想迭代的⽅式解决。 我们知道斐波那契数的前2个数都1,然后前2个数相加就是第3个数,那么我们从前往后,从⼩到⼤计算就⾏了。 这样就有下⾯的代码:
int Fib(int n)
{
int a = 1;
int b = 1;
int c = 1;
while(n>2)
{
c = a+b;
a = b;
b = c;
n--;
}
return c;
}
拓展学习:
- ⻘蛙跳台阶问题
- 汉诺塔问题
以上2个问题都可以使⽤递归很好的解决,有兴趣可以研究。