训练大模型自动在RAG和记忆间选择

现如今,检索增强生成(Retrieval-augmented generation,RAG)管道已经能够使得大语言模型(Large Language Models,LLM)在其响应环节中,充分利用外部的信息源了。不过,由于RAG应用会针对发送给LLM的每个请求,都去检索外部信息,而LLM实际上已经包含了大量无需检索即可使用的知识,因此整个过程反而显得效率低下。

那么,我们是否可以通过配置LLM,使其只在内部知识不足的情况下,才去使用RAG呢?目前,博尔扎诺大学(University of Bozen-Bolzano)和布鲁诺-凯斯勒基金会(Fondazione Bruno Kessler)的研发人员开发的一项“自适应LLM(Adapt-LLM,https://arxiv.org/abs/2404.19705)”技术,可以训练LLM动态地确定它们是否需要在问题解答任务中,检索额外的上下文信息,并避免不必要的外部检索,来提高LLM应用的效率。

记忆与检索

通常,LLM回答问题的方法主要有两种。这两种方法好比闭卷答题与开卷答题:

第一种是依靠在训练过程中获得的参数记忆。而这些参数记忆的局限性在于它需要完全基本语料的训练。你可以通过微调或少量提示技术,来提高参数记忆的性能,从而将模型的注意力集中在相关参数上。不过,在模型必须动态使用新的信息(例如:近期的新闻或是未包含在训练语料库中的私人信息)的情况下,这种方法并不实用。

第二种是使用信息检索器为模型提供上下文信息。而检索增强生成就属于这种方法。不过,信息检索的问题在于,有时模型并不需要额外的上下文信息,其内部知识足以回答问题。

而作为人类的我们,使用的却是混合方法。例如,当我们对某个问题的答案了如指掌时,我

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值