为了理解 APP 是如何进行渲染的,我们就必须了解手机硬件是如何工作的,也必须理解什么是 VSYNC。
首先,我们需要了解2个相关概念:
1. 刷新率(Refresh Rate):
代表了屏幕在一秒内刷新屏幕的次数,这取决于硬件的固定参数,例如 60Hz。
2. 帧率(Frame Rate)
代表了 GPU 在一秒内绘制操作的帧数,例如 30fps,60fps。
GPU 会获取图形数据进行渲染,然后硬件负责把渲染后的内容呈现到屏幕上,他们两者不停的进行协作。
如果刷新率和帧率,各自做自己的事,不相互协调工作,那么刷新频率和帧率并不总能够保持相同的节奏。如果发生帧率与刷新频率不一致的情况,就会容易出现画面撕裂(Tearing)的现象,也就是画面上下两部分显示内容发生断裂,来自不同的两帧数据发生重叠。
为了解决 Tearing 问题,Android 引入了 VSYNC 信号以及双重与三重缓存机制。
二、Google 的优化
从 Android 4.1 开始,谷歌致力于解决 Android 系统中最饱受诟病的一个问题,滑动不如 iOS 流畅。因谷歌在 4.1 版本引入了一个重大的改进—Project Butter,也即是黄油计划。
Project Butter 对 Android Display 系统进行了重构,引入了三个核心元素,即 VSYNC、Triple Buffer 和 Choreographer。Choreographer 在之前的文章《从源码分析Choreographer是如何实现VSYNC信号的请求及帧的刷新处理?(Android Q)》中已经分析过了,三重缓存机制我们后面介绍,这里我们重点讲解 VSYNC 的作用。
VSYNC(Vertical Synchronization)是一个相当古老的概念,对于游戏玩家,它有一个更加大名鼎鼎的中文名字—-垂直同步。垂直同步(vsync)指的是显卡的输出帧数和屏幕的垂直刷新率相同。在当下,垂直同步的含义我们可以理解为,使得显卡生成帧的速度和屏幕刷新的速度的保持一致。举例来说,如果屏幕的刷新率为 60Hz,那么生成帧的速度就应该被固定在 16ms。
上文中,我们已经知道了什么事画面撕裂(Tearing)现象以及它产生的原因,而 VSYNC 最重要的作用是防止出现画面撕裂。
VSYNC 信号是由屏幕(显示设备)产生的,并且以 60fps 的固定频率发送给 Android 系统,Android 系统中的 SurfaceFlinger 接收发送的 VSYNC 信号。VSYNC 信号表明可对屏幕进行刷新而不会产生撕裂。当 SurfaceFlinger 接收到 VSYNC 信号后,SurfaceFlinger 会遍历其层列表,以查找新的缓冲区。如果 SurfaceFlinger 找到新的缓冲区,SurfaceFlinger 会获取缓冲区;否则,SurfaceFlinger 会继续使用上一次获取的那个缓冲区。SurfaceFlinger 必须始终显示内容,因此它会保留一个缓冲区。如果在某个层上没有提交缓冲区,则该层会被忽略。
通常来说,帧率超过刷新频率只是一种理想的状况,在超过 60fps 的情况下,GPU 所产生的帧数据会因为等待 VSYNC 的刷新信息而被 Hold 住,这样能够保持每次刷新都有实际的新的数据可以显示。但是我们遇到更多的情况是帧率小于刷新频率。
在这种情况下,某些帧显示的画面内容就会与上一帧的画面相同。糟糕的事情是,帧率从超过 60fps 突然掉到 60fps 以下,这样就会发生 LAG,JANK,HITCHING 等卡顿掉帧的不顺滑的情况。这也是用户感受不好的原因所在。
接下来,我们以具体示例来看 VSYNC 的作用。
1. 没有使用 VSYNC 时
我们来看没有 VSYNC 的情况:
这个图中有三个元素,Display 是显示屏幕,GPU 和 CPU 负责渲染帧数据,每个帧以方框表示,并以数字进行编号,如0、1、2等等。
CPU 正常执行帧1,GPU 正常渲染帧1,所以帧1正常显示。
但,CPU 由于被占用等原因,等到即将显示帧2时,它才开始处理第二帧的内容,这显然完不成了,所以等到第二帧显示的时候,只能使用上一帧的内容显示了,也即是丢帧了。
上面丢帧的原因,我们可以从图中看出,是因为新的一帧开始的时候,CPU 在处理其他任务,并没有马上执行下一帧的任务,那么如何让 CPU 在新的一帧开始的时候立即处理显示内容呢?答案就在 VSYNC 身上!
2.使用 VSYNC 信号
我们来看,Android 引入 VSYNC 之后的帧执行示意图:
第0帧显示时,CPU 和 GPU 准备好了第一帧的内容。
第1帧刚开始显示时,CPU 放下手中的任务,立马处理第2帧显示相关的任务(这里使用了消息屏障机制,可以参考前文《Android消息循环的同步屏障机制及UI渲染性能的提升(Android Q)》),这样,在第二帧显示之前, CPU 和 GPU 也提前完成了显示任务的处理,第二帧正常显示。
可以看到,使用 VSYNC 信号机制,提升了渲染任务的优先级,优化了渲染性能,可有效的减少了丢帧、卡顿等问题。
但是上图中仍然存在一个问题:CPU 和 GPU 处理数据的速度似乎都能在 16ms 内完成,而且还有时间空余,也就是说,CPU 和 GPU 的帧率要高于 Display 的帧率。由于 CPU/GPU 只在收到 VSYNC 时才开始数据处理,故它们的帧率被拉低到与 Display 相同。但这种处理并没有什么问题,因为 Android 设备的 Display FPS 一般是 60,其对应的显示效果非常平滑。
但如果 CPU/GPU 的帧率小于 Display 的帧率,情况又不同了,将会发生如下图的情况:
在第二个 16ms 时间段,Display 本应显示 B 帧,但却因为 GPU 还在处理 B 帧,导致 A 帧被重复显示。
同理,在第二个 16ms 时间段内,CPU 无所事事,因为 A Buffer 被 Display 在使用。B Buffer 被 GPU 在使用。注意,一旦过了 VSYNC 时间点,CPU 就不能被触发以处理绘制工作了。
以上是使用双重缓存机制时产生的问题,那么又如何来解决呢?
为了解决这个问题,Android 引入了 Triple Buffer 机制。
三、Triple Buffer三重缓存机制
一般我们在绘制 UI 的时候,都会采用一种称为“双缓存”的技术(例如,上面几个例子)。双缓存意味着要使用两个缓存区,其中一个称为 Front Buffer,另外一个称为 Back Buffer。UI 总是先在 Back Buffer 中绘制,然后再和 Front Buffer 交换,渲染到显示设备中。理想情况下,这样一个刷新会在 16ms 内完成,下图就是描述的这样一个刷新过程:Display 处理前 Front Buffer,CPU、GPU 处理 Back Buffer。
文末
好了,今天的分享就到这里,如果你对在面试中遇到的问题,或者刚毕业及工作几年迷茫不知道该如何准备面试并突破现状提升自己,对于自己的未来还不够了解不知道给如何规划,可以来看看同行们都是如何突破现状,怎么学习的,来吸收他们的面试以及工作经验完善自己的之后的面试计划及职业规划。
这里放上一部分我工作以来以及参与过的大大小小的面试收集总结出来的相关的几十套腾讯、头条、阿里、美团等公司21年的面试专题,其中把技术点整理成了视频和PDF(实际上比预期多花了不少精力),包含知识脉络 + 诸多细节,由于篇幅有限,这里以图片的形式给大家展示一部分免费分享给大家,主要还是希望大家在如今大环境不好的情况下面试能够顺利一点,希望可以帮助到大家~
还有 高级架构技术进阶脑图、Android开发面试专题资料,高级进阶架构资料 帮助大家学习提升进阶,也节省大家在网上搜索资料的时间来学习,也可以分享给身边好友一起学习。
【Android核心高级技术PDF文档,BAT大厂面试真题解析】
【延伸Android必备知识点】
这里只是整理出来的部分面试题,后续会持续更新,希望通过这些高级面试题能够降低面试Android岗位的门槛,让更多的Android工程师理解Android系统,掌握Android系统。喜欢的话麻烦点击一个喜欢在关注一下~
6)]
【延伸Android必备知识点】
[外链图片转存中…(img-juslABUT-1719210147976)]
这里只是整理出来的部分面试题,后续会持续更新,希望通过这些高级面试题能够降低面试Android岗位的门槛,让更多的Android工程师理解Android系统,掌握Android系统。喜欢的话麻烦点击一个喜欢在关注一下~