【Hive】(十四)Hive 项目实战之电子商务消费行为分析_hive项目实战

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

use shopping

Create external table

创建四张对应的外部表,也就是本次项目中的近源表。

create external table if not exists ext_customer_details(
customer_id string,
first_name string,
last_name string,
email string,
gender string,
address string,
country string,
language string,
job string,
credit_type string,
credit_no string
)
row format delimited fields terminated by ','
location '/tmp/shopping/data/customer/'
tblproperties('skip.header.line.count'='1')

create external table if not exists ext_transaction_details(
transaction_id string,
customer_id string,
store_id string,
price double,
product string,
buydate string,
buytime string
)
row format delimited fields terminated by ','
location '/tmp/shopping/data/transaction'
tblproperties('skip.header.line.count'='1')

create external table if not exists ext_store_details(
store_id string,
store_name string,
employee_number int
)
row format delimited fields terminated by ','
location '/tmp/shopping/data/store/'
tblproperties('skip.header.line.count'='1')

create external table if not exists ext_store_review(
transaction_id string,
store_id string,
review_score int
)
row format delimited fields terminated by ','
location '/tmp/shopping/data/review'
tblproperties('skip.header.line.count'='1')

通过UDF自定义 MD5加密函数

Create MD5 encryption function

这里通过UDF自定义 MD5加密函数 ,对地址、邮箱等信息进行加密。

-- md5 udf自定义加密函数

--add jar /opt/soft/data/md5.jar
--create temporary function md5 as 'com.shopping.services.Encryption'

--select md5('abc')
--drop temporary function encrymd5

Clean and Mask customer_details 创建明细表

create table if not exists customer_details 
as select customer_id,first_name,last_name,md5(email) email,gender,md5(address) address,country,job,credit_type,md5(credit_no) 
from ext_customer_details

对表内容进行检查,为数据清洗做准备

Check ext_transaction_details data
transaction表的transaction_id进行检查,查看重复的、错误的、以及空值的数量。

这里从表中我们可以看到transaction_id存在100个重复的值。

with 
t1 as (select 'countrow' as status,count(transaction_id) as val from ext_transaction_details),
t2 as (select 'distinct' as status,(count(transaction_id)-count(distinct transaction_id)) as val from ext_transaction_details),
t3 as (select 'nullrow' as status,count(transaction_id) as val from ext_transaction_details where transaction_id is null),
t4 as (select 'errorexp' as status,count(regexp_extract(transaction_id,'^([0-9]{1,4})$',0)) as val from ext_transaction_details)
select \* from t1 union all select \* from t2 union all select \* from t3 union all select \* from t4

在这里插入图片描述
Clean transaction_details into partition table

create table if not exists transaction_details(
transaction_id string,
customer_id string,
store_id string,
price double,
product string,
buydate string,
buytime string
)
partitioned by (partday string)
row format delimited fields terminated by ','
stored as rcfile

开启动态分区

set hive.exec.dynamic.partition=true
set hive.exec.dynamic.partition.mode=nonstrict

开启动态分区,通过窗口函数对数据进行清洗

Clear data and import data into transaction_details

-- partday 分区 transaction\_id 重复 
select if(t.ct=1,transaction_id,concat(t.transaction_id,'\_',t.ct-1)) 
transaction_id,customer_id,store_id,price,product,buydate,buytime,date_format(buydate,'yyyy-MM') 
as partday 
from (select \*,row_number() over(partition by transaction_id) as ct 
from ext_transaction_details) t

insert into transaction_details partition(partday) 
select if(t.ct=1,transaction_id,concat(t.transaction_id,'\_',t.ct-1)) transaction_id,customer_id,store_id,price,product,buydate,buytime,date_format(regexp_replace(buydate,'/','-'),'yyyy-MM') 
as partday from (select \*,row_number() over(partition by transaction_id) as ct 
from ext_transaction_details) t 

  • row_number() over(partition by transaction_id) 窗口函数 :从1开始,按照顺序,生成分组内记录的序列,row_number()的值不会存在重复,当排序的值相同时,按照表中记录的顺序进行排列 这里我们对分组的transaction_id
  • if(t.ct=1,transaction_id,concat(t.transaction_id,'_',t.ct-1)) 如果满足ct=1,就是transaction_id,否则进行字符串拼接生成新的id

在这里插入图片描述
Clean store_review table

create table store_review 
as select transaction_id,store_id,nvl(review_score,ceil(rand()\*5)) 
as review_score from ext_store_review

NVL(E1, E2)的功能为:如果E1为NULL,则函数返回E2,否则返回E1本身。
在这里插入图片描述
我们可以看到表中的数据存在空值,通过NVL函数对数据进行填充。

show tables

在这里插入图片描述
通过清洗后的近源表和明细表如上。

数据分析
Customer分析
  • 找出顾客最常用的信用卡
select credit_type,count(credit_type) as peoplenum from customer_details
group by credit_type order by peoplenum desc limit 1

  • 找出客户资料中排名前五的职位名称
select job,count(job) as jobnum from customer_details
group by job
order by jobnum desc
limit 5

  • 在美国女性最常用的信用卡
select credit_type,count(credit_type) as femalenum from customer_details 
where gender='Female'
group by credit_type
order by femalenum desc
limit 1

  • 按性别和国家进行客户统计
select count(\*) as customernum,country,gender from customer_details
group by country,gender

Transaction分析
  • 计算每月总收入
select partday,sum(price) as countMoney from transaction_details group by partday

  • 计算每个季度的总收入
    Create Quarter Macro 定义季度宏,将时间按季度进行划分
create temporary macro 
calQuarter(dt string) 
concat(year(regexp_replace(dt,'/','-')),'年第',ceil(month(regexp_replace(dt,'/','-'))/3),'季度')

select calQuarter(buydate) as quarter,sum(price) as sale 
from transaction_details group by calQuarter(buydate)

在这里插入图片描述

  • 按年计算总收入
create temporary macro calYear(dt string) year(regexp_replace(dt,'/','-'))

select calYear(buydate) as year,sum(price) as sale from transaction_details group by calYear(buydate)

  • 按工作日计算总收入
create temporary macro calWeek(dt string) concat('星期',dayofweek(regexp_replace(dt,'/','-'))-1)

select concat('星期',dayofweek(regexp_replace(buydate,'/','-'))-1) as week,sum(price) as sale 
from transaction_details group by dayofweek(regexp_replace(buydate,'/','-'))

在这里插入图片描述

  • 按时间段计算总收入(需要清理数据)
select concat(regexp_extract(buytime,'[0-9]{1,2}',0),'时') as time,sum(price) as sale from transaction_details group by regexp_extract(buytime,'[0-9]{1,2}',0)

在这里插入图片描述

  • 按时间段计算平均消费
    Time macro
create temporary macro calTime(time string) if(split(time,' ')[1]='PM',regexp_extract(time,'[0-9]{1,2}',0)+12,
if(split(time,' ')[1]='AM',regexp_extract(time,'[0-9]{1,2}',0),split(time,':')[0]))

select calTime(buytime) as time,sum(price) as sale from transaction_details group by calTime(buytime) 

在这里插入图片描述

--define time bucket 
--early morning: (5:00, 8:00]
--morning: (8:00, 11:00]
--noon: (11:00, 13:00]
--afternoon: (13:00, 18:00]
--evening: (18:00, 22:00]
--night: (22:00, 5:00] --make it as else, since it is not liner increasing
--We also format the time. 1st format time to 19:23 like, then compare, then convert minites to hours
with
t1 as
(select calTime(buytime) as time,sum(price) as sale from transaction_details group by calTime(buytime) order by time),
t2 as
(select if(time>5 and time<=8,'early morning',if(time >8 and time<=11,'moring',if(time>11 and time <13,'noon',
if(time>13 and time <=18,'afternoon',if(time >18 and time <=22,'evening','night'))))) as sumtime,sale 
from t1)
select sumtime,sum(sale) from t2 
group by sumtime

在这里插入图片描述

  • 按工作日计算平均消费
select concat('星期',dayofweek(regexp_replace(buydate,'/','-'))-1) 
as week,avg(price) as sale from transaction_details 
where dayofweek(regexp_replace(buydate,'/','-'))-1 !=0 and dayofweek(regexp_replace(buydate,'/','-'))-1 !=6
group by dayofweek(regexp_replace(buydate,'/','-'))

在这里插入图片描述

  • 计算年、月、日的交易总数
select buydate as month,count(\*) as salenum from transaction_details group by buydate

  • 找出交易量最大的10个客户
select c.customer_id,c.first_name,c.last_name,count(c.customer_id) as custnum from customer_details c
inner join transaction_details t
on c.customer_id=t.customer_id
group by c.customer_id,c.first_name,c.last_name
order by custnum desc
limit 10

  • 找出消费最多的前10位顾客
select c.customer_id,c.first_name,c.last_name,sum(price) as sumprice from customer_details c
inner join transaction_details t
on c.customer_id=t.customer_id
group by c.customer_id,c.first_name,c.last_name
order by sumprice desc
limit 10

  • 统计该期间交易数量最少的用户
select c.customer_id,c.first_name,c.last_name,count(\*) as custnum from customer_details c
inner join transaction_details t
on c.customer_id=t.customer_id
group by c.customer_id,c.first_name,c.last_name
order by custnum asc
limit 1

  • 计算每个季度的独立客户总数
select calQuarter(buydate) as quarter,count(distinct customer_id) as uninum
from transaction_details
group by calQuarter(buydate)

  • 计算每周的独立客户总数
select calWeek(buydate) as quarter,count(distinct customer_id) as uninum
from transaction_details
group by calWeek(buydate)

  • 计算整个活动客户平均花费的最大值
select sum(price)/count(\*) as sale
from transaction_details
group by customer_id
order by sale desc
limit 1

  • 统计每月花费最多的客户
with 
t1 as
(select customer_id,partday,count(distinct buydate) as visit from transaction_details group by partday,customer_id),
t2 as
(select customer_id,partday,visit,row_number() over(partition by partday order by visit desc) as visitnum from t1)
select \* from t2 where visitnum=1 

  • 统计每月访问次数最多的客户
with
t1 as
(select customer_id,partday,sum(price) as pay from transaction_details group by partday,customer_id),
t2 as
(select customer_id,partday,pay,row_number() over(partition by partday order by pay desc) as paynum from t1)
select \* from t2 where paynum=1

  • 按总价找出最受欢迎的5种产品
select product,sum(price) as sale from transaction_details 
group by product
order by sale desc
limit 5

  • 根据购买频率找出最畅销的5种产品
select product,count(\*) as num from transaction_details 
group by product
order by num desc
limit 5

  • 根据客户数量找出最受欢迎的5种产品


![img](https://img-blog.csdnimg.cn/img_convert/28c52f012c9f08ce7d27a4e7ef153ce8.png)
![img](https://img-blog.csdnimg.cn/img_convert/03d3738b94eb07366025594dd2d3b953.png)

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.youkuaiyun.com/forums/4f45ff00ff254613a03fab5e56a57acb)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

oduct
order by sale desc
limit 5

  • 根据购买频率找出最畅销的5种产品
select product,count(\*) as num from transaction_details 
group by product
order by num desc
limit 5

  • 根据客户数量找出最受欢迎的5种产品


[外链图片转存中...(img-5wP8XR5x-1715350426072)]
[外链图片转存中...(img-wJoznxr3-1715350426072)]

**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.youkuaiyun.com/forums/4f45ff00ff254613a03fab5e56a57acb)**


**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值