一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
工具都帮大家整理好了,安装就可直接上手!
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
简历模板
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
plt.show()
更换主题:
plt.style.use(‘ggplot’)
plt.style.use(‘seaborn’)
plt.style.use(‘classic’)
最终我的效果:
折线图进阶
from matplotlib import pyplot as plt
plt.rcParams[‘font.sans-serif’]=[‘Microsoft YaHei’] # 使用微软雅黑的字体
plt.title(“中国票房2021TOP5”)
plt.plot(bo,prices,label=‘票房与票价’)
plt.plot(bo,persons,label=‘票房与人次’)
plt.plot(bo,points,label=‘票房与评价’)
plt.legend() # 显示标签
plt.xlabel(‘票房’)
plt.ylabel(‘行情’)
plt.show()
====================================================================
'r^--'
:红色虚线
'g^--'
:绿色虚线
'b^--'
:蓝色虚线
'g*-'
:表示绿色,并且数据标记是一个星号
^
:表示数据标记为一个向上的三角形
折线图进阶
from matplotlib import pyplot as plt
plt.rcParams[‘font.sans-serif’]=[‘Microsoft YaHei’] # 使用微软雅黑的字体
plt.title(“中国票房2021TOP5”)
plt.plot(bo,prices,‘r^–’,label=‘票房与票价’)
plt.plot(bo,persons,label=‘票房与人次’)
plt.plot(bo,points,label=‘票房与评价’)
plt.legend() # 显示标签
plt.xlabel(‘票房’) # 横坐标轴标题
plt.ylabel(‘行情’) # 纵坐标轴标题
plt.show()
折线图进阶
from matplotlib import pyplot as plt
plt.rcParams[‘font.sans-serif’]=[‘Microsoft YaHei’] # 使用微软雅黑的字体
plt.title(“中国票房2021TOP5”)
plt.plot(bo,prices,‘r^–’,label=‘票房与票价’)
plt.plot(bo,persons,‘g*-’,label=‘票房与人次’)
plt.plot(bo,points,‘bo–’,label=‘票房与评价’)
plt.legend() # 显示标签
plt.xlabel(‘票房’) # 横坐标轴标题
plt.ylabel(‘行情’) # 纵坐标轴标题
plt.show()
折线图进阶
from matplotlib import pyplot as plt
plt.rcParams[‘font.sans-serif’]=[‘Microsoft YaHei’] # 使用微软雅黑的字体
plt.title(“中国票房2021TOP5”)
plt.plot(bo,prices,‘r^–’,label=‘票房与票价’)
plt.plot(bo,persons,‘g*-’,label=‘票房与人次’)
plt.plot(bo,points,color=‘blue’,marker=‘o’,markersize=10,label=‘票房与评价’)
plt.legend() # 显示标签
plt.xlabel(‘票房’) # 横坐标轴标题
plt.ylabel(‘行情’) # 纵坐标轴标题
plt.show()
==========================================================================
plt.savefig(“cnbotop5.png”)
=====================================================================
03 经典款式无辅助线
plt.style.use(‘classic’)
折线图进阶
from matplotlib import pyplot as plt
plt.rcParams[‘font.sans-serif’]=[‘Microsoft YaHei’] # 使用微软雅黑的字体
plt.title(“中国票房2021TOP5”)
plt.plot(bo,prices,‘r^–’,label=‘票房与票价’)
plt.plot(bo,persons,‘g*-’,label=‘票房与人次’)
plt.plot(bo,points,color=‘blue’,marker=‘o’,markersize=10,label=‘票房与评价’)
plt.legend() # 显示标签
plt.xlabel(‘票房’) # 横坐标轴标题
plt.ylabel(‘行情’) # 纵坐标轴标题
plt.show()
plt.grid() # 添加网格线
===========================================================================
plt.figure(figsize=(16,10),dpi=100)
这里dpi就相当于清晰度,而figsize就是长度和宽度
======================================================================
05 使用特殊风格
from matplotlib import pyplot as plt
plt.xkcd()
plt.figure(figsize=(16,10),dpi=100)
plt.rcParams[‘font.sans-serif’]=[‘Microsoft YaHei’] # 使用微软雅黑的字体
plt.rcParams.update({‘font.family’: “Microsoft YaHei”})
plt.title(“中国票房2021TOP5”)
plt.plot(bo,prices,‘r^–’,label=‘票房与票价’)
plt.plot(bo,persons,‘g*-’,label=‘票房与人次’)
plt.plot(bo,points,color=‘blue’,marker=‘o’,markersize=10,label=‘票房与评价’)
plt.legend() # 显示标签
plt.xlabel(‘票房’) # 横坐标轴标题
plt.ylabel(‘行情’) # 纵坐标轴标题
plt.grid()
plt.savefig(“cnbotop5_300.png”)
plt.show()
调整长宽来进行图像的扁平化调整
=======================================================================
plt.xticks(rotation=45) # 横坐标轴的每个标题倾斜45度
绘制水平柱状图
plt.style.use(‘classic’)
cnbodfgbsort[“BO”].to_list().reverse()
cnbodfgbsort.index.to_list().reverse()
plt.figure(figsize=(16,10),dpi=100)
plt.rcParams.update({‘font.family’: “Microsoft YaHei”})
plt.title(“中国票房分类柱状图”)
最后
不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~
给大家准备的学习资料包括但不限于:
Python 环境、pycharm编辑器/永久激活/翻译插件
python 零基础视频教程
Python 界面开发实战教程
Python 爬虫实战教程
Python 数据分析实战教程
python 游戏开发实战教程
Python 电子书100本
Python 学习路线规划
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!