MNIST 数据集详析:使用残差网络RESNET识别手写数字(文末送书)_数字识别用的数据集

还有兄弟不知道网络安全面试可以提前刷题吗?费时一周整理的160+网络安全面试题,金九银十,做网络安全面试里的显眼包!

王岚嵚工程师面试题(附答案),只能帮兄弟们到这儿了!如果你能答对70%,找一个安全工作,问题不大。

对于有1-3年工作经验,想要跳槽的朋友来说,也是很好的温习资料!

【完整版领取方式在文末!!】

93道网络安全面试题

需要体系化学习资料的朋友,可以加我V获取:vip204888 (备注网络安全)

内容实在太多,不一一截图了

黑客学习资源推荐

最后给大家分享一份全套的网络安全学习资料,给那些想学习 网络安全的小伙伴们一点帮助!

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

1️⃣零基础入门
① 学习路线

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

image

② 路线对应学习视频

同时每个成长路线对应的板块都有配套的视频提供:

image-20231025112050764

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以点击这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!


如果出现这种错误:



> 
> SyntaxError: Non-UTF-8 code starting with \xca in fileD:\PycharmProjects\model-fuxian\data set\MNIST t.py on line 2, but noencoding declared; see http://python.org/dev/peps/pep-0263/ fordetails
> 
> 
> 


大概率是你没加:`# coding:gbk`,为什么呢?由于 Python 默认使用 ASCII 编码来解析源代码,因此如果源文件中包含了非 ASCII 编码的字符(比如中文字符),那么解释器就可能会抛出 SyntaxError 异常。加上# -*- coding: gbk -*-这样的注释语句可以告诉解释器当前源文件的字符编码格式是 GBK,从而避免源文件中文字符被错误地解析。


如果成功运行会出现这种结果,表示已经开始下载了:


![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/0f0103e175db4cd7818862e3e669806d.png)  
 输出结果:



> 
> Dataset MNIST  
>  Number of datapoints: 60000  
>  Root location: ./MNIST  
>  Split: Train  
>  StandardTransform  
>  Transform: ToTensor()  
>  Dataset MNIST  
>  Number of datapoints: 10000  
>  Root location: ./MNIST  
>  Split: Test  
>  StandardTransform  
>  Transform: ToTensor()
> 
> 
> 


## 3.数据集可视化



import torchvision
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import numpy as np
import matplotlib.pyplot as plt

train_data = datasets.MNIST(root=“model-fuxian/data set/MNIST/MNIST/raw/MNIST”,
train=True,
transform=transforms.ToTensor(),
download=False)

train_loader = DataLoader(dataset=train_data,
batch_size=64,
shuffle=True)

for num, (image, label) in enumerate(train_loader):
image_batch = torchvision.u

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值