先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Golang全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Go语言开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024b (备注go)
正文
MapReduce是一种编程模型,用于并行处理大量数据。它将计算过程分为两个阶段:Map(映射)和Reduce(归约)。在Map阶段,原始数据被分割成独立的小块,然后并行处理。在Reduce阶段,Map阶段的输出被合并,以生成最终结果。
Go语言中的MapReduce实现
在Go中实现MapReduce模式,我们需要关注两个核心函数:Map和Reduce。Go的并发特性,如goroutine和channel,使得实现MapReduce变得简单高效。
示例设计
假设我们有一批文档,需要计算每个单词出现的频率。下面是使用Go实现的一个简单MapReduce示例:
package main
import (
“fmt”
“strings”
“sync”
)
// Map函数
func Map(words []string, ch chan<- map[string]int) {
frequency := make(map[string]int)
for _, word := range words {
frequency[word]++
}
ch <- frequency
}
// Reduce函数
func Reduce(frequencies []map[string]int) map[string]int {
result := make(map[string]int)
for _, freq := range frequencies {
for word, count := range freq {
result[word] += count
}
}
return result
}
func main() {
documents := []string{“apple banana”, “apple orange”, “banana orange”, “banana”}
// 创建一个缓冲channel,大小与documents数量相同
ch := make(chan map[string]int, len(documents))
var wg sync.WaitGroup
// 分配任务到goroutine
for _, doc := range documents {
wg.Add(1) // 在启动goroutine之前增加计数
go func(doc string) {
defer wg.Done()
words := strings.Fields(doc)
Map(words, ch)
}(doc)
}
// 等待所有goroutine完成
wg.Wait()
close(ch) // 关闭channel
// 收集Map结果
var frequencies []map[string]int
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Go)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**