既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
(lStart, lEnd) = FACIAL_LANDMARKS_68_IDXS[“left_eye”]
(rStart, rEnd) = FACIAL_LANDMARKS_68_IDXS[“right_eye”]
然后我们通过关键点只取两个ROI区域,就是左眼区域和右眼区域。
print(“[INFO] starting video stream thread…”)
vs = cv2.VideoCapture(args[“video”])
随后我们将视频读进来。
while True:
# 预处理
frame = vs.read()[1]
if frame is None:
break
(h, w) = frame.shape[:2]
width=1200
r = width / float(w)
dim = (width, int(h * r))
frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
将视频的展示框放大一点,这里很关键就是如果视频的框框设置的太小的话,可能无法检测到人脸。然后我们就把宽设置成了1200,然后对长度也同比例就行resize操作。最后转换成灰度图。
rects = detector(gray, 0)
这里面检测到人脸,将人脸框的四个坐标拿到手。注意就是必须要是对灰度图进行处理。
for rect in rects:
# 获取坐标
shape = predictor(gray, rect)
shape = shape_to_np(shape)
在这里进行人脸框遍历,然后检测68关键点。
def shape_to_np(shape, dtype=“int”):
# 创建68*2
coords = np.zeros((shape.num_parts, 2), dtype=dtype)
# 遍历每一个关键点
# 得到坐标
for i in range(0, shape.num_parts):
coords[i] = (shape.part(i).x, shape.part(i).y)
return coords
这里就是提取关键点的坐标。
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
leftEAR = eye_aspect_ratio(leftEye)
rightEAR = eye_aspect_ratio(rightEye)
然后我们把左眼和右眼分别求了一下EAR数值。这里的`