先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上Java开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024b (备注Java)
正文
面试题2:ConcurrentHashMap在JDK1.7、1.8中都有哪些优化?
========================================================================================================
其实,JDK1.8版本的ConcurrentHashMap的数据结构已经接近HashMap,相对而言,ConcurrentHashMap只是增加了同步的操作来控制并发。
-
JDK1.7:
ReentrantLock
+Segment
+HashEntry
-
JDK1.8:
Synchronized
+CAS
+Node(HashEntry)
+红黑树
从JDK1.7版本的ReentrantLock+Segment+HashEntry,到JDK1.8版本中synchronized+CAS+HashEntry+红黑树。其中抛弃了原有的 Segment 分段锁,而采用了 CAS + synchronized
来保证并发安全性。
数据结构上跟HashMap很像,从1.7到1.8版本,由于HashEntry从链表
→ 红黑树
所以 concurrentHashMap的时间复杂度从O(n)到O(log(n))
↓↓↓;
同时,也把之前的HashEntry改成了Node
,作用不变
,当Node链表的节点数大于8
时Node会自动转化为TreeNode
,会转换成红黑树的结构。把值和next采用了volatile
去修饰,保证了可见性,并且也引入了红黑树,在链表大于一定值的时候会转换(默认是8)。
归纳一下:
-
JDK1.8的实现降低锁的粒度,JDK1.7版本锁的粒度是基于Segment的,包含多个HashEntry,而JDK1.8锁的粒度就是HashEntry(首节点)
-
JDK1.8版本的数据结构变得更加简单,使得操作也更加清晰流畅,因为已经使用synchronized来进行同步,所以
不需要分段锁的概念
(jdk1.8),也就不需要Segment这种数据结构了,由于粒度的降低,实现的复杂度也增加了 -
JDK1.8使用红黑树来优化链表,基于长度很长的链表的遍历是一个很漫长的过程,而红黑树的遍历效率是很快的,成功代替了一定阈值的链表。
追问1:JDK1.8为什么使用Synchronized来代替ReentrantLock?
JDK1.8为什么使用内置锁synchronized来代替重入锁ReentrantLock,主要有以下几点:
-
因为粒度降低了,在相对而言的低粒度加锁方式,synchronized并不比ReentrantLock差,在粗粒度加锁中ReentrantLock可能通过Condition来控制各个低粒度的边界,更加的灵活,而在低粒度中,Condition的优势就没有了
-
JVM的开发团队从来都没有放弃synchronized,而且基于JVM的synchronized优化空间更大,使用内嵌的关键字比使用API更加自然
-
在大量的数据操作下,对于JVM的内存压力,基于API的ReentrantLock会开销更多的内存,虽然不是瓶颈,但是也是一个原因之一。
追问2:讲讲ConcurrentHashMap的 get put 过程?
JDK1.7版本的get put
在JDK1.7版本中,ConcurrentHashMap的数据结构是由一个Segment数组
和多个HashEntry
组成,如下图所示:
Segment数组的意义就是将一个大的table分割成多个小的table来进行加锁,也就是上面的提到的锁分段技术,而每一个Segment元素存储的
是HashEntry数组+链表
,这个和HashMap的数据存储结构一样。
初始化
ConcurrentHashMap的初始化是会通过位与运算来初始化Segment的大小,用ssize来表示,源码如下所示
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// For serialization compatibility
// Emulate segment calculation from previous version of this class
int sshift = 0;
int ssize = 1;
while (ssize < DEFAULT_CONCURRENCY_LEVEL) {
++sshift;
ssize <<= 1;
}
int segmentShift = 32 - sshift;
int segmentMask = ssize - 1;
由此可以看出:因为ssize用位于运算来计算(ssize <<=1
),所以Segment的大小取值都是以2的N次方,无关concurrencyLevel的取值,当然concurrencyLevel最大只能用16位的二进制来表示,即65536,换句话说,Segment的大小最多65536个
,没有指定concurrencyLevel元素初始化,Segment的大小ssize默认为:DEFAULT_CONCURRENCY_LEVEL =16
。
每一个Segment元素下的HashEntry的初始化也是按照位于运算来计算,用cap来表示,如下:
int cap = 1;
while (cap < c)
cap <<= 1
如上所示,HashEntry大小的计算也是2的N次方(cap <<=1), cap的初始值为1,所以HashEntry最小的容量为2
JDK1.7 —— put操作
对于ConcurrentHashMap的数据插入,这里要进行两次Hash去定位数据的存储位置
static class Segment<K,V> extends ReentrantLock implements Serializable {
private static final long serialVersionUID = 2249069246763182397L;
final float loadFactor;
Segment(float lf) { this.loadFactor = lf; }
}
从上Segment的继承体系可以看出,Segment实现了ReentrantLock,也就带有锁的功能,当执行put操作时
,会进行第一次key的hash来定位Segment的位置
,如果该Segment还没有初始化,即通过CAS操作进行赋值
,然后进行第二次hash操作,找到相应的HashEntry的位置,这里会利用继承过来的锁的特性,在将数据插入指定的HashEntry位置时(链表的尾端
),会通过继承 ReentrantLock 的 tryLock()
方法尝试去获取锁,如果获取成功就直接插入相应的位置,如果已经有线程获取该Segment的锁,那当前线程会以自旋的方式去继续的调用tryLock()方法去获取锁
,超过指定次数就挂起,等待唤醒。
JDK1.7 —— get操作
ConcurrentHashMap的get操作跟HashMap类似,只是ConcurrentHashMap第一次需要经过一次hash定位到Segment的位置
,然后再hash定位到指定的HashEntry
,遍历该HashEntry下的链表进行对比,成功就返回,不成功就返回null
JDK1.8版本的get put
-
改进一
:取消segments
字段,直接采用transient volatile HashEntry<K,V>[] table
保存数据,采用table数组元素作为锁,从而实现了对每一行数据进行加锁,进一步减少并发冲突的概率。 -
改进二
:将原先table数组+单向链表的数据结构,变更为table数组+单向链表+红黑树的结构。
对于改进二的详细分析
:
对于hash表来说,最核心的能力在于将key hash之后能均匀的分布在数组中。
如果hash之后散列的很均匀
,那么table数组中的每个队列长度基本都为0或者1才对
。
但实际情况并非总是如此理想,虽然ConcurrentHashMap类默认的加载因子为0.75,但是在数据量过大或者运气不佳的情况下,还是
会存在一些队列长度过长的情况
,如果还是采用单向列表方式,那么查询某个节点的时间复杂度为O(n)
;
因此,对于个数超过8(默认值)的列表,jdk1.8中采用了红黑树的结构,那么查询的时间复杂度可以降低到O(logN),从而针对该种情况,改进了性能。
JDK1.8的实现已经摒弃了Segment的概念,而是直接用Node数组+链表+红黑树的数据结构来实现
,并发控制使用Synchronized和CAS来操作,整个看起来就像是优化过且线程安全的HashMap,虽然在JDK1.8中还能看到Segment的数据结构,但是已经简化了属性,只是为了兼容旧版本。
在深入JDK1.8的put和get实现之前要知道一些常量设计和数据结构,这些是构成ConcurrentHashMap实现结构的基础,下面看一下基本属性:
// node数组最大容量:2^30=1073741824
private static final int MAXIMUM_CAPACITY = 1 << 30;
// 默认初始值,必须是2的幕数
private static final int DEFAULT_CAPACITY = 16
//数组可能最大值,需要与toArray()相关方法关联
static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
//并发级别,遗留下来的,为兼容以前的版本
private static final int DEFAULT_CONCURRENCY_LEVEL = 16;
// 负载因子
private static final float LOAD_FACTOR = 0.75f;
// 链表转红黑树阀值,> 8 链表转换为红黑树
static final int TREEIFY_THRESHOLD = 8;
//树转链表阀值,小于等于6(tranfer时,lc、hc=0两个计数器分别++记录原bin、新binTreeNode数量,<=UNTREEIFY_THRESHOLD 则untreeify(lo))
static final int UNTREEIFY_THRESHOLD = 6;
static final int MIN_TREEIFY_CAPACITY = 64;
private static final int MIN_TRANSFER_STRIDE = 16;
private static int RESIZE_STAMP_BITS = 16;
// 2^15-1,help resize的最大线程数
private static final int MAX_RESIZERS = (1 << (32 - RESIZE_STAMP_BITS)) - 1;
// 32-16=16,sizeCtl中记录size大小的偏移量
private static final int RESIZE_STAMP_SHIFT = 32 - RESIZE_STAMP_BITS;
// forwarding nodes的hash值
static final int MOVED = -1;
// 树根节点的hash值
static final int TREEBIN = -2;
// ReservationNode的hash值
static final int RESERVED = -3;
// 可用处理器数量
static final int NCPU = Runtime.getRuntime().availableProcessors();
//存放node的数组
transient volatile Node<K,V>[] table;
/*控制标识符,用来控制table的初始化和扩容的操作,不同的值有不同的含义
*当为负数时:-1代表正在初始化,-N代表有N-1个线程正在 进行扩容
*当为0时:代表当时的table还没有被初始化
当为正数时:表示初始化或者下一次进行扩容的大小/
基本属性定义了ConcurrentHashMap的一些边界以及操作时的一些控制,下面看一些内部的一些结构组成,这些是整个ConcurrentHashMap整个数据结构的核心。
结构图改自:https://blog.youkuaiyun.com/ZOKEKAI/article/details/90085517
- Node
HashEntry == Node
Node是ConcurrentHashMap存储结构的基本单元,继承于HashMap中的Entry,用于存储数据,Node就是一个链表
,但是只允许对数据进行查找,不允许进行修改;
- TreeNode
TreeNode继承与Node,但是数据结构换成了二叉树结构,它是红黑树的数据的存储结构,用于红黑树中存储数据,当链表的节点数大于8时会转换成红黑树的结构,他就是通过TreeNode作为存储结构代替Node来转换成黑红树。源代码如下
- TreeBin
TreeBin从字面含义中可以理解为存储树形结构的容器,而树形结构就是指TreeNode,所以TreeBin就是封装TreeNode的容器,它提供转换黑红树的一些条件和锁的控制。
现在通过一个简单的例子以debug的视角看看ConcurrentHashMap的具体操作细节
public class TestConcurrentHashMap{
public static void main(String[] args){
ConcurrentHashMap<String,String> map = new ConcurrentHashMap(); //初始化ConcurrentHashMap
//新增个人信息
map.put(“id”,“1”);
map.put(“name”,“andy”);
map.put(“sex”,“男”);
//获取姓名
String name = map.get(“name”);
Assert.assertEquals(name,“andy”);
//计算大小
int size = map.size();
Assert.assertEquals(size,3);
}
}
我们先通过new ConcurrentHashMap()来进行初始化
public ConcurrentHashMap() {
}
由上你会发现ConcurrentHashMap的初始化其实是一个空实现
,并没有做任何事,这里后面会讲到,这也是和其他的集合类有区别的地方,初始化操作并不是在构造函数实现的
,而是在put操作中实现
,当然ConcurrentHashMap还提供了其他的构造函数,有指定容量大小或者指定负载因子,跟HashMap一样。
JDK1.8 —— put操作
在上面的例子中我们新增个人信息会调用put方法,我们来看下
public V put(K key, V value) {
return putVal(key, value, false);
}
/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();
int hash = spread(key.hashCode()); //两次hash,减少hash冲突,可以均匀分布
int binCount = 0;
for (Node<K,V>[] tab = table;😉 { //对这个table进行迭代
Node<K,V> f; int n, i, fh;
//这里就是上面构造方法没有进行初始化,在这里进行判断,为null就调用initTable进行初始化,属于懒汉模式初始化
if (tab == null || (n = tab.length) == 0)
tab = initTable();
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {//如果i位置没有数据,就直接无锁插入
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
else if ((fh = f.hash) == MOVED)//如果在进行扩容,则先进行扩容操作
tab = helpTransfer(tab, f);
else {
V oldVal = null;
//如果以上条件都不满足,那就要进行加锁操作,也就是存在hash冲突,锁住链表或者红黑树的头结点
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) { //表示该节点是链表结构
binCount = 1;
for (Node<K,V> e = f;; ++binCount) {
K ek;
//这里涉及到相同的key进行put就会覆盖原先的value
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
if ((e = e.next) == null) { //插入链表尾部
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
else if (f instanceof TreeBin) {//红黑树结构
Node<K,V> p;
binCount = 2;
//红黑树结构旋转插入
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
if (binCount != 0) { //如果链表的长度大于8时就会进行红黑树的转换
if (binCount >= TREEIFY_THRESHOLD)
最后
整理的这些资料希望对Java开发的朋友们有所参考以及少走弯路,本文的重点是你有没有收获与成长,其余的都不重要,希望读者们能谨记这一点。
其实面试这一块早在第一个说的25大面试专题就全都有的。以上提及的这些全部的面试+学习的各种笔记资料,我这差不多来回搞了三个多月,收集整理真的很不容易,其中还有很多自己的一些知识总结。正是因为很麻烦,所以对以上这些学习复习资料感兴趣
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Java)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
if (binCount >= TREEIFY_THRESHOLD)
最后
整理的这些资料希望对Java开发的朋友们有所参考以及少走弯路,本文的重点是你有没有收获与成长,其余的都不重要,希望读者们能谨记这一点。
[外链图片转存中…(img-g2nbZJGw-1713546701531)]
[外链图片转存中…(img-sIa6neMi-1713546701531)]
其实面试这一块早在第一个说的25大面试专题就全都有的。以上提及的这些全部的面试+学习的各种笔记资料,我这差不多来回搞了三个多月,收集整理真的很不容易,其中还有很多自己的一些知识总结。正是因为很麻烦,所以对以上这些学习复习资料感兴趣
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注Java)
[外链图片转存中…(img-NcDe8gp6-1713546701531)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!