最常用的分布式 ID 解决方案,都在这里了!

本文详细介绍了几种常见的分布式ID解决方案,包括UUID、数据库主键自增、Redis自增和雪花算法。重点讲解了雪花算法的工作原理和实现,以及如何通过Java实现Snowflake算法。同时提到了美团的Leaf服务作为开源组件的选择参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

| — | — | — | — |

| UUID | UUID是通用唯一标识码的缩写,其目的是上分布式系统中的所有元素都有唯一的辨识信息,而不需要通过中央控制器来指定唯一标识。 | 1. 降低全局节点的压力,使得主键生成速度更快;2. 生成的主键全局唯一;3. 跨服务器合并数据方便 | 1. UUID占用16个字符,空间占用较多;2. 不是递增有序的数字,数据写入IO随机性很大,且索引效率下降 |

| 数据库主键自增 | MySQL数据库设置主键且主键自动增长 | 1. INT和BIGINT类型占用空间较小;2. 主键自动增长,IO写入连续性好;3. 数字类型查询速度优于字符串 | 1. 并发性能不高,受限于数据库性能;2. 分库分表,需要改造,复杂;3. 自增:数据量泄露 |

| Redis自增 | Redis计数器,原子性自增 | 使用内存,并发性能好 | 1. 数据丢失;2. 自增:数据量泄露 |

| 雪花算法(snowflake) | 大名鼎鼎的雪花算法,分布式ID的经典解决方案 | 1. 不依赖外部组件;2. 性能好 | 时钟回拨 |

目前流行的分布式ID解决方案有两种:「号段模式」「雪花算法」

**「号段模式」**依赖于数据库,但是区别于数据库主键自增的模式。假设100为一个号段100,200,300,每取一次可以获得100个ID,性能显著提高。

**「雪花算法」**是由符号位+时间戳+工作机器id+序列号组成的,如图所示:

符号位为0,0表示正数,ID为正数。

时间戳位不用多说,用来存放时间戳,单位是ms。

工作机器id位用来存放机器的id,通常分为5个区域位+5个服务器标识位。

序号位是自增。

  • 雪花算法能存放多少数据?时间范围:2^41 / (3652460601000) = 69年 工作进程范围:2^10 = 1024 序列号范围:2^12 = 4096,表示1ms可以生成4096个ID。

根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。下面是推特版的Snowflake算法:

public class SnowFlake {

/**

* 起始的时间戳

*/

private final static long START_STMP = 1480166465631L;

/**

* 每一部分占用的位数

*/

private final static long SEQUENCE_BIT = 12; //序列号占用的位数

private final static long MACHINE_BIT = 5;   //机器标识占用的位数

private final static long DATACENTER_BIT = 5;//数据中心占用的位数

/**

* 每一部分的最大值

*/

private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);

private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);

private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);

/**

* 每一部分向左的位移

*/

private final static long MACHINE_LEFT = SEQUENCE_BIT;

private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;

private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;

private long datacenterId;  //数据中心

private long machineId;     //机器标识

private long sequence = 0L; //序列号

private long lastStmp = -1L;//上一次时间戳

public SnowFlake(long datacenterId, long machineId) {

if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {

throw new IllegalArgumentException(“datacenterId can’t be greater than MAX_DATACENTER_NUM or less than 0”);

}

if (machineId > MAX_MACHINE_NUM || machineId < 0) {

throw new IllegalArgumentException(“machineId can’t be greater than MAX_MACHINE_NUM or less than 0”);

}

this.datacenterId = datacenterId;

this.machineId = machineId;

}

/**

* 产生下一个ID

* @return

*/

public synchronized long nextId() {

long currStmp = getNewstmp();

if (currStmp < lastStmp) {

throw new RuntimeException(“Clock moved backwards.  Refusing to generate id”);

}

if (currStmp == lastStmp) {

//相同毫秒内,序列号自增

sequence = (sequence + 1) & MAX_SEQUENCE;

//同一毫秒的序列数已经达到最大

if (sequence == 0L) {

currStmp = getNextMill();

}

} else {

//不同毫秒内,序列号置为0

sequence = 0L;

}

lastStmp = currStmp;

return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分

| datacenterId << DATACENTER_LEFT       //数据中心部分

| machineId << MACHINE_LEFT             //机器标识部分

| sequence;                             //序列号部分

}

private long getNextMill() {

long mill = getNewstmp();

while (mill <= lastStmp) {

mill = getNewstmp();

}

return mill;

}

private long getNewstmp() {

return System.currentTimeMillis();

}

public static void main(String[] args) {

SnowFlake snowFlake = new SnowFlake(2, 3);

for (int i = 0; i < (1 << 12); i++) {

System.out.println(snowFlake.nextId());

}

}

}

「三、分布式ID开源组件」

=================

3.1 如何选择开源组件


选择开源组件首先需要看软件特性是否满足需求,主要包括兼容性和扩展性。

其次需要看目前的技术能力,根据目前自己或者团队的技术栈和技术能力,能否可以平滑的使用。

第三,要看开源组件的社区,主要关注更新是否频繁、项目是否有人维护、遇到坑的时候可以取得联系寻求帮助、是否在业内被广泛使用等。

3.2 美团Leaf


Leaf是美团基础研发平台推出的一个分布式ID生成服务,名字取自德国哲学家、数学家莱布尼茨的一句话:“There are no two identical leaves in the world.”Leaf具备高可靠、低延迟、全局唯一等特点。目前已经广泛应用于美团金融、美团外卖、美团酒旅等多个部门。

具体的技术细节,可参考美团技术博客的一篇文章:《Leaf美团分布式ID生成服务》。目前,Leaf项目已经在Github上开源:https://github.com/Meituan-Dianping/Leaf。Leaf在特性如下:

  1. 全局唯一,绝对不会出现重复的ID,且ID整体趋势递增。

  2. 高可用,服务完全基于分布式架构,即使MySQL宕机,也能容忍一段时间的数据库不可用。

  3. 高并发低延时,在CentOS 4C8G的虚拟机上,远程调用QPS可达5W+,TP99在1ms内。

  4. 接入简单,直接通过公司RPC服务或者HTTP调用即可接入。

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)

img

总结

大型分布式系统犹如一个生命,系统中各个服务犹如骨骼,其中的数据犹如血液,而Kafka犹如经络,串联整个系统。这份Kafka源码笔记通过大量的设计图展示、代码分析、示例分享,把Kafka的实现脉络展示在读者面前,帮助读者更好地研读Kafka代码。

麻烦帮忙转发一下这篇文章+关注我

就这一次!拼多多内部架构师培训Kafka源码笔记(现已绝版)

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
3%;" />

总结

大型分布式系统犹如一个生命,系统中各个服务犹如骨骼,其中的数据犹如血液,而Kafka犹如经络,串联整个系统。这份Kafka源码笔记通过大量的设计图展示、代码分析、示例分享,把Kafka的实现脉络展示在读者面前,帮助读者更好地研读Kafka代码。

麻烦帮忙转发一下这篇文章+关注我

[外链图片转存中…(img-qGGYIBQu-1713731039349)]

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值