第P9周:YOLOv5-backbone模块实现

第P9周:YOLOv5-backbone模块实现

文为「365天深度学习训练营」内部文章

参考本文所写记录性文章,请在文章开头带上「👉声明」

本次我将利用YOLOv5算法中的Backbone模块搭建网络,后续理论部分介绍将在语雀以及公众号(K同学啊)中详细展开,本次内容除了网络结构部分外,其余部分均与上周相同。

YOLOv5是目标检测算法,是否可以尝试将其网络结构用在目标识别上,或进行改进形成一个全新的算法(类似之前介绍过的VGG1-6)。如果效果不错的话,还可以搞一篇期刊文章出来~

分享一张我自己绘制的YOLOv5_6.0版本的算法框架图,希望它可以有助于你完成本次探索~
在这里插入图片描述

🏡 我的环境:

  • 语言环境:Python3.12
  • 编译器:VS Code
  • 数据集:天气识别数据集
  • 深度学习环境:Pytorch
    • torch==2.5.1+mps
    • torchvision==0.20.1

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
from torchvision import transforms, datasets
import PIL,pathlib,warnings

warnings.filterwarnings("ignore")             #忽略警告信息

device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
device
device(type='mps')

2. 导入数据

data_dir = './weather_photos/'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("/")[1] for path in data_paths]
classeNames
['cloudy', 'rain', 'shine', 'sunrise']
# 关于transforms.Compose的更多介绍可以参考:https://blog.youkuaiyun.com/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("./weather_photos/",transform=train_transforms)
total_data
Dataset ImageFolder
    Number of datapoints: 1125
    Root location: ./weather_photos/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
total_data.class_to_idx
{'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}

3. 划分数据集

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
(<torch.utils.data.dataset.Subset at 0x317bfb740>,
 <torch.utils.data.dataset.Subset at 0x317bfa9c0>)
batch_size = 4

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
Shape of X [N, C, H, W]:  torch.Size([4, 3, 224, 224])
Shape of y:  torch.Size([4]) torch.int64

二、搭建模型

1. 搭建模型

import torch.nn.functional as F

def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        # # k 是 int 整数则除以2, 若干的整数值则循环整除
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        """
        :param c1: 输入的channel值
        :param c2: 输出的channel值
        :param k: 卷积的kernel_size
        :param s: 卷积的stride
        :param p: 卷积的padding  一般是None
        :param act: 激活函数类型   True就是SiLU(), False就是不使用激活函数
        :param g: 卷积的groups数  =1就是普通的卷积  >1就是深度可分离卷积
        """
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        # 若act=True, 则激活,  act=False, 不激活
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

class Bottleneck(nn.Module):
    # Standard bottleneck
    """
    :param c1: 整个Bottleneck的输入channel
    :param c2: 整个Bottleneck的输出channel
    :param e: expansion ratio  c2*e 就是第一个卷积的输出channel=第二个卷积的输入channel
    :param shortcut: bool Bottleneck中是否有shortcut,默认True
    :param g: Bottleneck中的3x3卷积类型  =1普通卷积  >1深度可分离卷积
    """
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        """
        :param c1: 整个 C3 的输入channel
        :param c2: 整个 C3 的输出channel
        :param n: 有n个Bottleneck
        :param shortcut: bool Bottleneck中是否有shortcut,默认True
        :param g: C3中的3x3卷积类型  =1普通卷积  >1深度可分离卷积
        :param e: expansion ratio
        """
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))

class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
"""
这个是YOLOv5, 6.0版本的主干网络,这里进行复现
(注:有部分删改,详细讲解将在后续进行展开)
"""
class YOLOv5_backbone(nn.Module):
    def __init__(self):
        super(YOLOv5_backbone, self).__init__()
        
        self.Conv_1 = Conv(3, 64, 3, 2, 2) 
        self.Conv_2 = Conv(64, 128, 3, 2) 
        self.C3_3   = C3(128,128)
        self.Conv_4 = Conv(128, 256, 3, 2) 
        self.C3_5   = C3(256,256)
        self.Conv_6 = Conv(256, 512, 3, 2) 
        self.C3_7   = C3(512,512)
        self.Conv_8 = Conv(512, 1024, 3, 2) 
        self.C3_9   = C3(1024, 1024)
        self.SPPF   = SPPF(1024, 1024, 5)
        
        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=65536, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=4)
        )
        
    def forward(self, x):
        x = self.Conv_1(x)
        x = self.Conv_2(x)
        x = self.C3_3(x)
        x = self.Conv_4(x)
        x = self.C3_5(x)
        x = self.Conv_6(x)
        x = self.C3_7(x)
        x = self.Conv_8(x)
        x = self.C3_9(x)
        x = self.SPPF(x)
        
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)

        return x

print("Using {} device".format(device))
    
model = YOLOv5_backbone().to(device)
model
Using mps device





YOLOv5_backbone(
  (Conv_1): Conv(
    (conv): Conv2d(3, 64, kernel_size=(3, 3), stride=(2, 2), padding=(2, 2), bias=False)
    (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (Conv_2): Conv(
    (conv): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_3): C3(
    (cv1): Conv(
      (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(128, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (Conv_4): Conv(
    (conv): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_5): C3(
    (cv1): Conv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (Conv_6): Conv(
    (conv): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_7): C3(
    (cv1): Conv(
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (Conv_8): Conv(
    (conv): Conv2d(512, 1024, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_9): C3(
    (cv1): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(1024, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(512, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (SPPF): SPPF(
    (cv1): Conv(
      (conv): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(2048, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): MaxPool2d(kernel_size=5, stride=1, padding=2, dilation=1, ceil_mode=False)
  )
  (classifier): Sequential(
    (0): Linear(in_features=65536, out_features=100, bias=True)
    (1): ReLU()
    (2): Linear(in_features=100, out_features=4, bias=True)
  )
)

2. 查看模型详情

# 统计模型参数量以及其他指标
from torchinfo import summary
model = model.to("cpu")
batch_size = 32
summary(model, input_size = (batch_size, 3, 224, 224))
===============================================================================================
Layer (type:depth-idx)                        Output Shape              Param #
===============================================================================================
YOLOv5_backbone                               [32, 4]                   --
├─Conv: 1-1                                   [32, 64, 113, 113]        --
│    └─Conv2d: 2-1                            [32, 64, 113, 113]        1,728
│    └─BatchNorm2d: 2-2                       [32, 64, 113, 113]        128
│    └─SiLU: 2-3                              [32, 64, 113, 113]        --
├─Conv: 1-2                                   [32, 128, 57, 57]         --
│    └─Conv2d: 2-4                            [32, 128, 57, 57]         73,728
│    └─BatchNorm2d: 2-5                       [32, 128, 57, 57]         256
│    └─SiLU: 2-6                              [32, 128, 57, 57]         --
├─C3: 1-3                                     [32, 128, 57, 57]         --
│    └─Conv: 2-7                              [32, 64, 57, 57]          --
│    │    └─Conv2d: 3-1                       [32, 64, 57, 57]          8,192
│    │    └─BatchNorm2d: 3-2                  [32, 64, 57, 57]          128
│    │    └─SiLU: 3-3                         [32, 64, 57, 57]          --
│    └─Sequential: 2-8                        [32, 64, 57, 57]          --
│    │    └─Bottleneck: 3-4                   [32, 64, 57, 57]          41,216
│    └─Conv: 2-9                              [32, 64, 57, 57]          --
│    │    └─Conv2d: 3-5                       [32, 64, 57, 57]          8,192
│    │    └─BatchNorm2d: 3-6                  [32, 64, 57, 57]          128
│    │    └─SiLU: 3-7                         [32, 64, 57, 57]          --
│    └─Conv: 2-10                             [32, 128, 57, 57]         --
│    │    └─Conv2d: 3-8                       [32, 128, 57, 57]         16,384
│    │    └─BatchNorm2d: 3-9                  [32, 128, 57, 57]         256
│    │    └─SiLU: 3-10                        [32, 128, 57, 57]         --
├─Conv: 1-4                                   [32, 256, 29, 29]         --
│    └─Conv2d: 2-11                           [32, 256, 29, 29]         294,912
│    └─BatchNorm2d: 2-12                      [32, 256, 29, 29]         512
│    └─SiLU: 2-13                             [32, 256, 29, 29]         --
├─C3: 1-5                                     [32, 256, 29, 29]         --
│    └─Conv: 2-14                             [32, 128, 29, 29]         --
│    │    └─Conv2d: 3-11                      [32, 128, 29, 29]         32,768
│    │    └─BatchNorm2d: 3-12                 [32, 128, 29, 29]         256
│    │    └─SiLU: 3-13                        [32, 128, 29, 29]         --
│    └─Sequential: 2-15                       [32, 128, 29, 29]         --
│    │    └─Bottleneck: 3-14                  [32, 128, 29, 29]         164,352
│    └─Conv: 2-16                             [32, 128, 29, 29]         --
│    │    └─Conv2d: 3-15                      [32, 128, 29, 29]         32,768
│    │    └─BatchNorm2d: 3-16                 [32, 128, 29, 29]         256
│    │    └─SiLU: 3-17                        [32, 128, 29, 29]         --
│    └─Conv: 2-17                             [32, 256, 29, 29]         --
│    │    └─Conv2d: 3-18                      [32, 256, 29, 29]         65,536
│    │    └─BatchNorm2d: 3-19                 [32, 256, 29, 29]         512
│    │    └─SiLU: 3-20                        [32, 256, 29, 29]         --
├─Conv: 1-6                                   [32, 512, 15, 15]         --
│    └─Conv2d: 2-18                           [32, 512, 15, 15]         1,179,648
│    └─BatchNorm2d: 2-19                      [32, 512, 15, 15]         1,024
│    └─SiLU: 2-20                             [32, 512, 15, 15]         --
├─C3: 1-7                                     [32, 512, 15, 15]         --
│    └─Conv: 2-21                             [32, 256, 15, 15]         --
│    │    └─Conv2d: 3-21                      [32, 256, 15, 15]         131,072
│    │    └─BatchNorm2d: 3-22                 [32, 256, 15, 15]         512
│    │    └─SiLU: 3-23                        [32, 256, 15, 15]         --
│    └─Sequential: 2-22                       [32, 256, 15, 15]         --
│    │    └─Bottleneck: 3-24                  [32, 256, 15, 15]         656,384
│    └─Conv: 2-23                             [32, 256, 15, 15]         --
│    │    └─Conv2d: 3-25                      [32, 256, 15, 15]         131,072
│    │    └─BatchNorm2d: 3-26                 [32, 256, 15, 15]         512
│    │    └─SiLU: 3-27                        [32, 256, 15, 15]         --
│    └─Conv: 2-24                             [32, 512, 15, 15]         --
│    │    └─Conv2d: 3-28                      [32, 512, 15, 15]         262,144
│    │    └─BatchNorm2d: 3-29                 [32, 512, 15, 15]         1,024
│    │    └─SiLU: 3-30                        [32, 512, 15, 15]         --
├─Conv: 1-8                                   [32, 1024, 8, 8]          --
│    └─Conv2d: 2-25                           [32, 1024, 8, 8]          4,718,592
│    └─BatchNorm2d: 2-26                      [32, 1024, 8, 8]          2,048
│    └─SiLU: 2-27                             [32, 1024, 8, 8]          --
├─C3: 1-9                                     [32, 1024, 8, 8]          --
│    └─Conv: 2-28                             [32, 512, 8, 8]           --
│    │    └─Conv2d: 3-31                      [32, 512, 8, 8]           524,288
│    │    └─BatchNorm2d: 3-32                 [32, 512, 8, 8]           1,024
│    │    └─SiLU: 3-33                        [32, 512, 8, 8]           --
│    └─Sequential: 2-29                       [32, 512, 8, 8]           --
│    │    └─Bottleneck: 3-34                  [32, 512, 8, 8]           2,623,488
│    └─Conv: 2-30                             [32, 512, 8, 8]           --
│    │    └─Conv2d: 3-35                      [32, 512, 8, 8]           524,288
│    │    └─BatchNorm2d: 3-36                 [32, 512, 8, 8]           1,024
│    │    └─SiLU: 3-37                        [32, 512, 8, 8]           --
│    └─Conv: 2-31                             [32, 1024, 8, 8]          --
│    │    └─Conv2d: 3-38                      [32, 1024, 8, 8]          1,048,576
│    │    └─BatchNorm2d: 3-39                 [32, 1024, 8, 8]          2,048
│    │    └─SiLU: 3-40                        [32, 1024, 8, 8]          --
├─SPPF: 1-10                                  [32, 1024, 8, 8]          --
│    └─Conv: 2-32                             [32, 512, 8, 8]           --
│    │    └─Conv2d: 3-41                      [32, 512, 8, 8]           524,288
│    │    └─BatchNorm2d: 3-42                 [32, 512, 8, 8]           1,024
│    │    └─SiLU: 3-43                        [32, 512, 8, 8]           --
│    └─MaxPool2d: 2-33                        [32, 512, 8, 8]           --
│    └─MaxPool2d: 2-34                        [32, 512, 8, 8]           --
│    └─MaxPool2d: 2-35                        [32, 512, 8, 8]           --
│    └─Conv: 2-36                             [32, 1024, 8, 8]          --
│    │    └─Conv2d: 3-44                      [32, 1024, 8, 8]          2,097,152
│    │    └─BatchNorm2d: 3-45                 [32, 1024, 8, 8]          2,048
│    │    └─SiLU: 3-46                        [32, 1024, 8, 8]          --
├─Sequential: 1-11                            [32, 4]                   --
│    └─Linear: 2-37                           [32, 100]                 6,553,700
│    └─ReLU: 2-38                             [32, 100]                 --
│    └─Linear: 2-39                           [32, 4]                   404
===============================================================================================
Total params: 21,729,592
Trainable params: 21,729,592
Non-trainable params: 0
Total mult-adds (Units.GIGABYTES): 73.80
===============================================================================================
Input size (MB): 19.27
Forward/backward pass size (MB): 2131.55
Params size (MB): 86.92
Estimated Total Size (MB): 2237.74
===============================================================================================
model = model.to(device)

三、 训练模型

1. 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

2. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

3. 正式训练

model.train()、model.eval()训练营往期文章中有详细的介绍。

📌如果将优化器换成 SGD 会发生什么呢?请自行探索接下来发生的诡异事件的原因。

import copy

optimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数

epochs     = 60

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc   = epoch_test_acc
        best_model = copy.deepcopy(model)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
    
# 保存最佳模型到文件中
PATH = './best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

print('Done')
Epoch: 1, Train_acc:54.8%, Train_loss:1.173, Test_acc:70.2%, Test_loss:0.717, Lr:1.00E-04
Epoch: 2, Train_acc:66.3%, Train_loss:0.832, Test_acc:80.4%, Test_loss:0.467, Lr:1.00E-04
Epoch: 3, Train_acc:75.0%, Train_loss:0.647, Test_acc:80.4%, Test_loss:0.515, Lr:1.00E-04
Epoch: 4, Train_acc:79.1%, Train_loss:0.562, Test_acc:85.8%, Test_loss:0.447, Lr:1.00E-04
Epoch: 5, Train_acc:84.6%, Train_loss:0.428, Test_acc:74.2%, Test_loss:0.938, Lr:1.00E-04
Epoch: 6, Train_acc:84.2%, Train_loss:0.433, Test_acc:81.8%, Test_loss:0.485, Lr:1.00E-04
Epoch: 7, Train_acc:86.2%, Train_loss:0.359, Test_acc:85.3%, Test_loss:0.408, Lr:1.00E-04
Epoch: 8, Train_acc:88.4%, Train_loss:0.331, Test_acc:93.3%, Test_loss:0.274, Lr:1.00E-04
Epoch: 9, Train_acc:89.0%, Train_loss:0.290, Test_acc:88.9%, Test_loss:0.393, Lr:1.00E-04
Epoch:10, Train_acc:89.7%, Train_loss:0.282, Test_acc:92.0%, Test_loss:0.236, Lr:1.00E-04
Epoch:11, Train_acc:92.2%, Train_loss:0.201, Test_acc:86.7%, Test_loss:0.555, Lr:1.00E-04
Epoch:12, Train_acc:92.4%, Train_loss:0.208, Test_acc:91.1%, Test_loss:0.288, Lr:1.00E-04
Epoch:13, Train_acc:92.8%, Train_loss:0.192, Test_acc:89.3%, Test_loss:0.366, Lr:1.00E-04
Epoch:14, Train_acc:94.9%, Train_loss:0.156, Test_acc:92.0%, Test_loss:0.323, Lr:1.00E-04
Epoch:15, Train_acc:92.9%, Train_loss:0.209, Test_acc:85.3%, Test_loss:0.418, Lr:1.00E-04
Epoch:16, Train_acc:93.8%, Train_loss:0.162, Test_acc:92.4%, Test_loss:0.248, Lr:1.00E-04
Epoch:17, Train_acc:95.4%, Train_loss:0.128, Test_acc:94.7%, Test_loss:0.206, Lr:1.00E-04
Epoch:18, Train_acc:96.7%, Train_loss:0.105, Test_acc:92.9%, Test_loss:0.216, Lr:1.00E-04
Epoch:19, Train_acc:97.0%, Train_loss:0.077, Test_acc:92.9%, Test_loss:0.213, Lr:1.00E-04
Epoch:20, Train_acc:98.4%, Train_loss:0.048, Test_acc:95.1%, Test_loss:0.240, Lr:1.00E-04
Epoch:21, Train_acc:96.0%, Train_loss:0.127, Test_acc:87.1%, Test_loss:0.601, Lr:1.00E-04
Epoch:22, Train_acc:96.6%, Train_loss:0.096, Test_acc:87.6%, Test_loss:0.436, Lr:1.00E-04
Epoch:23, Train_acc:97.4%, Train_loss:0.071, Test_acc:93.8%, Test_loss:0.214, Lr:1.00E-04
Epoch:24, Train_acc:98.3%, Train_loss:0.047, Test_acc:91.6%, Test_loss:0.260, Lr:1.00E-04
Epoch:25, Train_acc:97.8%, Train_loss:0.067, Test_acc:91.6%, Test_loss:0.312, Lr:1.00E-04
Epoch:26, Train_acc:96.4%, Train_loss:0.078, Test_acc:92.9%, Test_loss:0.271, Lr:1.00E-04
Epoch:27, Train_acc:96.6%, Train_loss:0.112, Test_acc:89.8%, Test_loss:0.292, Lr:1.00E-04
Epoch:28, Train_acc:97.0%, Train_loss:0.094, Test_acc:93.3%, Test_loss:0.284, Lr:1.00E-04
Epoch:29, Train_acc:96.2%, Train_loss:0.108, Test_acc:90.2%, Test_loss:0.320, Lr:1.00E-04
Epoch:30, Train_acc:96.3%, Train_loss:0.097, Test_acc:92.0%, Test_loss:0.283, Lr:1.00E-04
Epoch:31, Train_acc:99.2%, Train_loss:0.022, Test_acc:93.8%, Test_loss:0.230, Lr:1.00E-04
Epoch:32, Train_acc:99.6%, Train_loss:0.017, Test_acc:91.6%, Test_loss:0.247, Lr:1.00E-04
Epoch:33, Train_acc:98.3%, Train_loss:0.065, Test_acc:91.1%, Test_loss:0.371, Lr:1.00E-04
Epoch:34, Train_acc:96.8%, Train_loss:0.105, Test_acc:90.7%, Test_loss:0.395, Lr:1.00E-04
Epoch:35, Train_acc:98.1%, Train_loss:0.062, Test_acc:92.4%, Test_loss:0.302, Lr:1.00E-04
Epoch:36, Train_acc:96.8%, Train_loss:0.096, Test_acc:89.8%, Test_loss:0.542, Lr:1.00E-04
Epoch:37, Train_acc:97.2%, Train_loss:0.078, Test_acc:93.8%, Test_loss:0.355, Lr:1.00E-04
Epoch:38, Train_acc:99.7%, Train_loss:0.015, Test_acc:93.3%, Test_loss:0.296, Lr:1.00E-04
Epoch:39, Train_acc:100.0%, Train_loss:0.005, Test_acc:94.7%, Test_loss:0.276, Lr:1.00E-04
Epoch:40, Train_acc:99.6%, Train_loss:0.007, Test_acc:90.2%, Test_loss:0.387, Lr:1.00E-04
Epoch:41, Train_acc:98.6%, Train_loss:0.044, Test_acc:87.6%, Test_loss:0.474, Lr:1.00E-04
Epoch:42, Train_acc:99.1%, Train_loss:0.028, Test_acc:83.6%, Test_loss:0.987, Lr:1.00E-04
Epoch:43, Train_acc:96.6%, Train_loss:0.134, Test_acc:86.2%, Test_loss:1.002, Lr:1.00E-04
Epoch:44, Train_acc:97.3%, Train_loss:0.078, Test_acc:90.2%, Test_loss:0.525, Lr:1.00E-04
Epoch:45, Train_acc:98.6%, Train_loss:0.031, Test_acc:88.0%, Test_loss:0.623, Lr:1.00E-04
Epoch:46, Train_acc:99.4%, Train_loss:0.016, Test_acc:93.8%, Test_loss:0.307, Lr:1.00E-04
Epoch:47, Train_acc:100.0%, Train_loss:0.003, Test_acc:93.8%, Test_loss:0.289, Lr:1.00E-04
Epoch:48, Train_acc:98.2%, Train_loss:0.066, Test_acc:88.4%, Test_loss:0.464, Lr:1.00E-04
Epoch:49, Train_acc:98.8%, Train_loss:0.047, Test_acc:90.2%, Test_loss:0.339, Lr:1.00E-04
Epoch:50, Train_acc:97.0%, Train_loss:0.089, Test_acc:89.3%, Test_loss:0.523, Lr:1.00E-04
Epoch:51, Train_acc:99.2%, Train_loss:0.026, Test_acc:89.3%, Test_loss:0.517, Lr:1.00E-04
Epoch:52, Train_acc:99.4%, Train_loss:0.032, Test_acc:91.1%, Test_loss:0.343, Lr:1.00E-04
Epoch:53, Train_acc:99.2%, Train_loss:0.027, Test_acc:92.9%, Test_loss:0.612, Lr:1.00E-04
Epoch:54, Train_acc:99.2%, Train_loss:0.019, Test_acc:91.6%, Test_loss:0.461, Lr:1.00E-04
Epoch:55, Train_acc:99.9%, Train_loss:0.004, Test_acc:92.4%, Test_loss:0.480, Lr:1.00E-04
Epoch:56, Train_acc:99.7%, Train_loss:0.005, Test_acc:92.4%, Test_loss:0.463, Lr:1.00E-04
Epoch:57, Train_acc:100.0%, Train_loss:0.004, Test_acc:92.0%, Test_loss:0.468, Lr:1.00E-04
Epoch:58, Train_acc:98.1%, Train_loss:0.079, Test_acc:85.8%, Test_loss:0.686, Lr:1.00E-04
Epoch:59, Train_acc:96.8%, Train_loss:0.129, Test_acc:92.0%, Test_loss:0.357, Lr:1.00E-04
Epoch:60, Train_acc:97.4%, Train_loss:0.075, Test_acc:91.1%, Test_loss:0.467, Lr:1.00E-04
Done

四、 结果可视化

1. Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

2. 模型评估

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss
(0.9511111111111111, 0.2404080551484201)
# 查看是否与我们记录的最高准确率一致
epoch_test_acc
0.9511111111111111

五、测试感想

本以为这个是完整的yolov5, 运行完后才发现仅仅是backbone部分,还缺少neck和head.

YOLOv5中引入了大量的缩写,影响了对网络架构的理解。简单罗列如下,还需要每个模块深入了解

  1. CBS: Conv + BatchNorm + Silu
  2. C3: Concentrated-Comprehensive Convolution
    a. https://sh-tsang.medium.com/reading-c3-concentrated-comprehensive-convolution-semantic-segmentation-5b6dd3fb46b2
  3. CSPNet: Cross Stage Partial Network
  4. FPN: Feature Pyramid Network
  5. PAN: Pyramid Attention Network
  6. SPPF: Spatial Pyramid Pooling - Fast (SPPF)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值