C. Trinity
You are given an array a a a of n n n elements a 1 , a 2 , … , a n a_1, a_2, \ldots, a_n a1,a2,…,an.
You can perform the following operation any number (possibly 0 0 0) of times:
- Choose two integers i i i and j j j, where 1 ≤ i , j ≤ n 1 \le i, j \le n 1≤i,j≤n, and assign a i : = a j a_i := a_j ai:=aj.
Find the minimum number of operations required to make the array a a a satisfy the condition:
- For every pairwise distinct triplet of indices ( x , y , z ) (x, y, z) (x,y,z) ( 1 ≤ x , y , z ≤ n 1 \le x, y, z \le n 1≤x,y,z≤n, x ≠ y x \ne y x=y, y ≠ z y \ne z y=z, x ≠ z x \ne z x=z), there exists a non-degenerate triangle with side lengths a x a_x ax, a y a_y ay and a z a_z az, i.e. a x + a y > a z a_x + a_y > a_z ax+ay>az, a y + a z > a x a_y + a_z > a_x ay+az>ax and a z + a x > a y a_z + a_x > a_y az+ax>ay.
Input
Each test consists of multiple test cases. The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1≤t≤104) — the number of test cases. The description of the test cases follows.
The first line of each test case contains a single integer n n n ( 3 ≤ n ≤ 2 ⋅ 1 0 5 3 \le n \le 2 \cdot 10^5 3≤n≤2⋅105) — the number of elements in the array a a a.
The second line of each test case contains n n n integers a 1 , a 2 , … , a n a_1, a_2, \ldots, a_n a1,a2,…,an ( 1 ≤ a i ≤ 1 0 9 1 \le a_i \le 10^9 1≤ai≤109) — the elements of the array a a a.
It is guaranteed that the sum of n n n over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2⋅105.
Output
For each test case, output a single integer — the minimum number of operations required.
Example
Input
4
7
1 2 3 4 5 6 7
3
1 3 2
3
4 5 3
15
9 3 8 1 6 5 3 8 2 1 4 2 9 4 7
Output
3
1
0
8
Note
In the first test case, one of the possible series of operations would be:
- Assign a 1 : = a 4 = 4 a_1 := a_4 = 4 a1:=a4=4. The array will become [ 4 , 2 , 3 , 4 , 5 , 6 , 7 ] [4, 2, 3, 4, 5, 6, 7] [4,2,3,4,5,6,7].
- Assign a 2 : = a 5 = 5 a_2 := a_5 = 5 a2:=a5=5. The array will become [ 4 , 5 , 3 , 4 , 5 , 6 , 7 ] [4, 5, 3, 4, 5, 6, 7] [4,5,3,4,5,6,7].
- Assign a 7 : = a 1 = 4 a_7 := a_1 = 4 a7:=a1=4. The array will become [ 4 , 5 , 3 , 4 , 5 , 6 , 4 ] [4, 5, 3, 4, 5, 6, 4] [4,5,3,4,5,6,4].
It can be proven that any triplet of elements with pairwise distinct indices in the final array forms a non-degenerate triangle, and there is no possible answer using less than 3 3 3 operations.
In the second test case, we can assign a 1 : = a 2 = 3 a_1 := a_2 = 3 a1:=a2=3 to make the array a = [ 3 , 3 , 2 ] a = [3, 3, 2] a=[3,3,2].
In the third test case, since 3 3 3, 4 4 4 and 5 5 5 are valid side lengths of a triangle, we don’t need to perform any operation to the array.
code
#include<bits/stdc++.h>
#define int long long
#define endl '\n'
using namespace std;
const int N = 2e5+10,INF=0x3f3f3f3f,mod=1e9+7;
typedef pair<int,int> PII;
int T=1;
void solve(){
int n;
cin>>n;
vector<int> a(n);
for(int i=0;i<n;i++){
cin>>a[i];
}
sort(a.begin(),a.end());
int l=0,ans=INF;
for(int r=2;r<n;r++){
while(a[l]+a[l+1]<=a[r]){
l++;
}
ans=min(ans,l+n-r-1);
}
cout<<ans<<endl;
}
signed main(){
cin>>T;
while(T--){
solve();
}
return 0;
}