Lonely Numbers

I. Lonely Numbers

In number world, two different numbers are friends if they have a lot in common, but also each one has unique perks.

More precisely, two different numbers a a a and b b b are friends if g c d ( a , b ) gcd(a,b) gcd(a,b), a g c d ( a , b ) \frac{a}{gcd(a,b)} gcd(a,b)a, b g c d ( a , b ) \frac{b}{gcd(a,b)} gcd(a,b)b can form sides of a triangle.

Three numbers a a a, b b b and c c c can form sides of a triangle if a + b > c a + b > c a+b>c, b + c > a b + c > a b+c>a and c + a > b c + a > b c+a>b.

In a group of numbers, a number is lonely if it doesn’t have any friends in that group.

Given a group of numbers containing all numbers from 1 , 2 , 3 , . . . , n 1, 2, 3, ..., n 1,2,3,...,n, how many numbers in that group are lonely?

Input

The first line contains a single integer t t t ( 1 ≤ t ≤ 1 0 6 ) (1 \leq t \leq 10^6) (1t106) - number of test cases.

On next line there are t t t numbers, n i n_i ni ( 1 ≤ n i ≤ 1 0 6 ) (1 \leq n_i \leq 10^6) (1ni106) - meaning that in case i i i you should solve for numbers 1 , 2 , 3 , . . . , n i 1, 2, 3, ..., n_i 1,2,3,...,ni

Output

For each test case, print the answer on separate lines: number of lonely numbers in group 1 , 2 , 3 , . . . , n i 1, 2, 3, ..., n_i 1,2,3,...,ni.

Example

Input

3
1 5 10

Output

1
3
3

Note

For first test case, 1 1 1 is the only number and therefore lonely.

For second test case where n = 5 n=5 n=5, numbers 1 1 1, 3 3 3 and 5 5 5 are lonely.

For third test case where n = 10 n=10 n=10, numbers 1 1 1, 5 5 5 and 7 7 7 are lonely.

code

#include<bits/stdc++.h>
#define int long long
#define endl '\n'
 
using namespace std;


const int N = 1e6+10,INF=0x3f3f3f3f,mod=1e9+7;
 
typedef pair<int,int> PII;

int T=1;
int a[N];
bool st[N];
int b[N];
int c[N]; 
int d[N];
int sum[N];
int cnt;

void f(int n){
	for(int i=2;i<=n;i++)
    {
        if(!st[i]) a[cnt++] = i;
        if(a[cnt-1]*a[cnt-1]<=N) b[a[cnt-1]*a[cnt-1]]=1;
        c[a[cnt-1]]=1;
        for(int j=0;a[j]<=n/i;j++)
        {
            st[a[j]*i]=true;
            if(i%a[j]==0) break;
        }
    }
}

void solve(){
	int n;
    cin>>n;
    vector<int> t(n+5,0);
    int Max=-1;
    for(int i=0;i<n;i++) cin>>t[i],Max=max(Max,t[i]);
    f(Max);
//    cout<<Max<<endl;
	for(int i=1;i<=Max;i++) sum[i]=sum[i-1]+b[i];
	for(int i=1;i<=Max;i++){
		d[i]=d[i-1]+c[i];
//		cout<<"d["<<i<<"]:"<<d[i]<<endl; 
	}
    int ans=1;
	for(int i=0;i<n;i++){
		cout<<ans+d[t[i]]-sum[t[i]]<<endl;
	}
}

signed main(){
//	cin>>T; 
 	ios::sync_with_stdio(false);
    cin.tie(0),cout.tie(0);
    while(T--){
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值