如果大家对线程没有概念,可以看看我的这个专栏 线程
thread类的介绍
在C++11之前,涉及到多线程问题,都是和平台相关的,比如windows和linux下各有自己的接
口,这使得代码的可移植性比较差。C++11中最重要的特性就是对线程进行支持了,使得C++在
并行编程时不需要依赖第三方库,而且在原子操作中还引入了原子类的概念。要使用标准库中的
线程,必须包含< thread >头文件。
注意:
1. 线程是操作系统中的一个概念,线程对象可以关联一个线程,用来控制线程以及获取线程的
状态。
2. 当创建一个线程对象后,没有提供线程函数,该对象实际没有对应任何线程。
#include <thread>
int main()
{
std::thread t1;
cout << t1.get_id() << endl;
return 0;
}
get_id()的返回值类型为id类型,id类型实际为std::thread命名空间下封装的一个类,该类中
包含了一个结构体:
// vs下查看
typedef struct
{
/* thread identifier for Win32 */
void *_Hnd; /* Win32 HANDLE */
unsigned int _Id;
} _Thrd_imp_t;
如果你想方便的获得int的id,可以这样this_thread::get_id()来获得
this_thread这个类提供了get_id()函数,可以获得线程id
3. 当创建一个线程对象后,并且给线程关联线程函数,该线程就被启动,与主线程一起运行。
线程函数一般情况下可按照以下三种方式提供:
- 函数指针
- lambda表达式
- 函数对象
#include <iostream>
using namespace std;
#include <thread>
void ThreadFunc(int a)
{
cout << "Thread1" << a << endl;
}
class TF
{
public:
void operator()()
{
cout << "Thread3" << endl;
}
};
int main()
{
// 线程函数为函数指针
thread t1(ThreadFunc, 10);
// 线程函数为lambda表达式
thread t2([]{cout << "Thread2" << endl; });
// 线程函数为函数对象
TF tf;
thread t3(tf);
t1.join();
t2.join();
t3.join();
cout << "Main thread!" << endl;
return 0;
}
4. thread类是防拷贝的,不允许拷贝构造以及赋值,但是可以移动构造和移动赋值,即将一个
线程对象关联线程的状态转移给其他线程对象,转移期间不意向线程的执行。
5. 可以通过jionable()函数判断线程是否是有效的,如果是以下任意情况,则线程无效
- 采用无参构造函数构造的线程对象
- 线程对象的状态已经转移给其他线程对象
- 线程已经调用join或者detach结束
线程函数参数
线程函数的参数是以值拷贝的方式拷贝到线程栈空间中的,因此:即使线程参数为引用类型,在
线程中修改后也不能修改外部实参,因为其实际引用的是线程栈中的拷贝,而不是外部实参
#include <iostream>
#include <thread>
using namespace std;
void ThreadFunc1(int &x)
{
x += 10;
}
void ThreadFunc2(int *x)
{
*x += 10;
}
int main()
{
int a = 10;
// 在线程函数中对a修改,不会影响外部实参,因为:线程函数参数虽然是引用方式,但其实际引用的是线程栈中的拷贝
//thread t1(ThreadFunc1, a);//这样写是错误的,引用类型的话不能直接传值
//t1.join();
cout << a << endl;
// 如果想要通过形参改变外部实参时,必须借助std::ref()函数
thread t2(ThreadFunc1, std::ref(a));
t2.join();
cout << a << endl;
// 地址的拷贝,通过指针修改
thread t3(ThreadFunc2, &a);
t3.join();
cout << a << endl;
return 0;
}
注意:如果是类成员函数作为线程参数时,必须将this作为线程函数参数
原子性操作库(atomic)
多线程最主要的问题是共享数据带来的问题(即线程安全)。如果共享数据都是只读的,那么没问
题,因为只读操作不会影响到数据,更不会涉及对数据的修改,所以所有线程都会获得同样的数
据。但是,当一个或多个线程要修改共享数据时,就会产生很多潜在的麻烦。比如:
#include <iostream>
using namespace std;
#include <thread>
unsigned long sum = 0L;
void fun(size_t num)
{
for (size_t i = 0; i < num; ++i)
sum++;
}
int main()
{
cout << "Before joining,sum = " << sum << std::endl;
thread t1(fun, 10000000);
thread t2(fun, 10000000);
t1.join();
t2.join();
cout << "After joining,sum = " << sum << std::endl;
return 0;
}
C++98中传统的解决方式:可以对共享修改的数据可以加锁保护。
#include <iostream>
using namespace std;
#include <thread>
#include <mutex>
std::mutex m;
unsigned long sum = 0L;
void fun(size_t num)
{
for (size_t i = 0; i < num; ++i)
{
m.lock();
sum++;
m.unlock();
}
}
int main()
{
cout << "Before joining,sum = " << sum << std::endl;
thread t1(fun, 10000000);
thread t2(fun, 10000000);
t1.join();
t2.join();
cout << "After joining,sum = " << sum << std::endl;
return 0;
}
虽然加锁可以解决,但是加锁有一个缺陷就是:只要一个线程在对sum++时,其他线程就会被阻
塞,会影响程序运行的效率,而且锁如果控制不好,还容易造成死锁。
因此C++11中引入了原子操作。所谓原子操作:即不可被中断的一个或一系列操作,C++11引入
的原子操作类型,使得线程间数据的同步变得非常高效。
注意:需要使用以上原子操作变量时,必须添加头文件 #include<atomic>
#include <iostream>
using namespace std;
#include <thread>
#include <atomic>
atomic_long sum{0};
void fun(size_t num)
{
for (size_t i = 0; i < num; ++i)
sum++; // 原子操作
}
int main()
{
cout << "Before joining, sum = " << sum << std::endl;
thread t1(fun, 1000000);
thread t2(fun, 1000000);
t1.join();
t2.join();
cout << "After joining, sum = " << sum << std::endl;
return 0;
}
在C++11中,程序员不需要对原子类型变量进行加锁解锁操作,线程能够对原子类型变量互斥的
访问。
atmoic<T> t; // 声明一个类型为T的原子类型变量t
注意:原子类型通常属于"资源型"数据,多个线程只能访问单个原子类型的拷贝,因此在C++11
中,原子类型只能从其模板参数中进行构造,不允许原子类型进行拷贝构造、移动构造以及
operator=等,为了防止意外,标准库已经将atmoic模板类中的拷贝构造、移动构造、赋值运算
符重载默认删除掉了。
#include <atomic>
int main()
{
atomic<int> a1(0);
// atomic<int> a2(a1); // 编译失败
atomic<int> a2(0);
// a2 = a1; // 编译失败
return 0;
}
mutex的种类
在C++11中,Mutex总共包了四个互斥量的种类
1. std::mutex
C++11提供的最基本的互斥量,该类的对象之间不能拷贝,也不能进行移动。mutex最常用的三个函数:
注意,线程函数调用lock()时,可能会发生以下三种情况:
- 如果该互斥量当前没有被锁住,则调用线程将该互斥量锁住,直到调用 unlock之前,该线程一直拥有该锁
- 如果当前互斥量被其他线程锁住,则当前的调用线程被阻塞住
- 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)
线程函数调用try_lock()时,可能会发生以下三种情况:
- 如果当前互斥量没有被其他线程占有,则该线程锁住互斥量,直到该线程调用 unlock释放互斥量
- 如果当前互斥量被其他线程锁住,则当前调用线程返回 false,而并不会被阻塞掉
- 如果当前互斥量被当前调用线程锁住,则会产生死锁(deadlock)
2. std::recursive_mutex
其允许同一个线程对互斥量多次上锁(即递归上锁),来获得对互斥量对象的多层所有权,释放互斥量时需要调用与该锁层次深度相同次数的 unlock(),除此之外,std::recursive_mutex 的特性和 std::mutex 大致相同。
递归时使用
#include <mutex>
int x = 0;
recursive_mutex mtx;
void Func(int n)
{
if (n == 0)
return;
mtx.lock();
++x;
Func(n - 1);
mtx.unlock();
}
int main()
{
thread t1(Func, 10000);
thread t2(Func, 20000);
t1.join();
t2.join();
cout << x << endl;
return 0;
}
3. std::timed_mutex
比 std::mutex 多了两个成员函数,try_lock_for(),try_lock_until() 。
try_lock_for()
接受一个时间范围,表示在这一段时间范围之内线程如果没有获得锁则被阻塞住(与std::mutex 的 try_lock() 不同,try_lock 如果被调用时没有获得锁则直接返回false),如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。
try_lock_until()
接受一个时间点作为参数,在指定时间点未到来之前线程如果没有获得锁则被阻塞住,如果在此期间其他线程释放了锁,则该线程可以获得对互斥量的锁,如果超时(即在指定时间内还是没有获得锁),则返回 false。
4. std::recursive_timed_mutex
同理
lock_guard
std::lock_gurad 是 C++11 中定义的模板类。定义如下
template <class _Mutex>
class lock_guard
{
public:
// 在构造lock_gard时,_Mtx还没有被上锁
explicit lock_guard(_Mutex &_Mtx)
: _MyMutex(_Mtx)
{
_MyMutex.lock();
}
// 在构造lock_gard时,_Mtx已经被上锁,此处不需要再上锁
lock_guard(_Mutex &_Mtx, adopt_lock_t)
: _MyMutex(_Mtx)
{
}
~lock_guard() noexcept
{
_MyMutex.unlock();
}
lock_guard(const lock_guard &) = delete;
lock_guard &operator=(const lock_guard &) = delete;
private:
_Mutex &_MyMutex;
};
通过上述代码可以看到,lock_guard类模板主要是通过RAII的方式,对其管理的互斥量进行了封装,在需要加锁的地方,只需要用上述介绍的任意互斥体实例化一个lock_guard,调用构造函数
成功上锁,出作用域前,lock_guard对象要被销毁,调用析构函数自动解锁,可以有效避免死锁
问题。
lock_guard的缺陷:太单一,用户没有办法对该锁进行控制,因此C++11又提供了unique_lock。
下面可以利用lock_guard来解决抛异常死锁问题
#include<iostream>
#include<thread>
#include <mutex>
using namespace std;
int x = 0;
mutex mtx;
void Func(int n)
{
for (int i = 0; i < n; i++)
{
try
{
lock_guard<mutex> lock(mtx);
++x;
// .... 抛异常
if (rand() % 3 == 0)
{
throw exception(/*"抛异常"*/);
}
}
catch (const exception &e)
{
cout << e.what() << endl;
}
}
}
int main()
{
thread t1(Func, 10);
t1.join();
cout << x << endl;
return 0;
}
unique_lock
与lock_gard类似,unique_lock类模板也是采用RAII的方式对锁进行了封装,并且也是以独占所
有权的方式管理mutex对象的上锁和解锁操作,即其对象之间不能发生拷贝。在构造(或移动
(move)赋值)时,unique_lock 对象需要传递一个 Mutex 对象作为它的参数,新创建的unique_lock 对象负责传入的 Mutex 对象的上锁和解锁操作。
使用以上类型互斥量实例化unique_lock的对象时,自动调用构造函数上锁,unique_lock对象销毁时自动调用析构函数解锁,可以很方便的防止死锁问题。与lock_guard不同的是,unique_lock更加的灵活,提供了更多的成员函数:
- 上锁/解锁操作:lock、try_lock、try_lock_for、try_lock_until和unlock
- 修改操作:移动赋值、交换(swap:与另一个unique_lock对象互换所管理的互斥量所有权)、释放(release:返回它所管理的互斥量对象的指针,并释放所有权)
- 获取属性:owns_lock(返回当前对象是否上了锁)、operator bool()(与owns_lock()的功能相同)、mutex(返回当前unique_lock所管理的互斥量的指针)。
condition_variable
condition_variable和Linux posix的条件变量并没有什么大的区别,主要还是面向对象实现的。
- 如果资源不就绪,就wait等待,如果持有锁就解锁,被唤醒了函数返回又重新持有锁
- notify唤醒条件变量下的线程,如果条件变量下没有线程,就什么都不做,如果有就唤醒第一个线程
wait中提供了两个方法,一个是直接wait,一个是通过pred(相当于函数对象)的真假来判断是否wait,假就wait
下面利用condition_variable支持两个线程交替打印,一个打印奇数,一个打印偶数
第一种方法 利用第一个wait方法
#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>
using namespace std;
// 支持两个线程交替打印,t1打印奇数,t2一个打印偶数
int main()
{
mutex mtx;
condition_variable cv;
int n = 100;
int x = 2;
thread t1([&, n]()
{
while (1)
{
unique_lock<mutex> lock(mtx);
if (x >= 100)
break;
if (x % 2 == 0) // 偶数就阻塞
{
cv.wait(lock);
}
cout << this_thread::get_id() << ":" << x << endl;
++x;
cv.notify_one();
} });
thread t2([&, n]()
{
while (1)
{
unique_lock<mutex> lock(mtx);
if (x > 100)
break;
if (x % 2 != 0) // 奇数就阻塞
{
cv.wait(lock);
}
cout << this_thread::get_id() << ":" << x << endl;
++x;
cv.notify_one();
} });
t1.join();
t2.join();
return 0;
}
第二种方法 利用第二个wait方法
#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>
using namespace std;
// 支持两个线程交替打印,t1打印奇数,t2一个打印偶数
int main()
{
mutex mtx;
condition_variable cv;
int n = 100;
int x = 2;
thread t1([&, n]()
{
while (1)
{
unique_lock<mutex> lock(mtx);
if (x >= 100)
break;
cv.wait(lock, [&x]() {return x % 2 != 0; }); // 偶数就阻塞
cout << this_thread::get_id() << ":" << x << endl;
++x;
cv.notify_one();
} });
thread t2([&, n]()
{
while (1)
{
unique_lock<mutex> lock(mtx);
if (x > 100)
break;
cv.wait(lock, [&x](){return x % 2 == 0; });// 奇数就阻塞
cout << this_thread::get_id() << ":" << x << endl;
++x;
cv.notify_one();
} });
t1.join();
t2.join();
return 0;
}