蓝桥杯九宫重排 --python

九宫重排

题目描述

如下图的九宫格中,放着 1 ~ 8 的数字卡片,还有一个格子空着。与空格子相邻的格子中的卡片可以移动到空格中。 经过若干次移动,可以形成图 2 所示的局面。

在这里插入图片描述
在这里插入图片描述

我们把上图的局面记为:12345678.

把下图的局面记为:123.46758

显然是按从上到下,从左到右的顺序记录数字,空格记为句点。

题目的任务是已知九宫的初态和终态,求最少经过多少步的移动可以到达。如果无论多少步都无法到达,则输出 -1。

思路

典型的bfs(宽度优先搜索)就是在判断边界条件的时候要注意一下,移动位置上下加减三,左右加减一
在这里插入图片描述

代码实现

import sys
from collections import deque
start = input()
end = input()
q = deque()
q.append((start,0))        #加入起始数据,移动次数
dic = set()
dic.add(start)          #去重
dir = [1,-1,3,-3]           #九宫格移动方向
while q:        #非空就运行
    now = q.popleft()       #双端队列 头部删除
    for i in dir:           #四个位置
        state = list(now[0])        #读出队列当前的字符串,转换为数组
        count = now[1]      #次数
        index = state.index('.')        #找.的索引位置
        new_index = index + i       #索引的新位置
        if new_index >= 0 and new_index < 9 and (index == 2 and new_index == 3) == 0 and (index == 3 and new_index == 2) == 0 and (index == 5 and new_index == 6) == 0 and (
                index == 6 and new_index == 5) == 0:        #防止越界
            state[index], state[new_index] = state[new_index], state[index]         #换位
            end_index = ''.join(state)          
            count += 1
            if end_index == end:        #判断退出条件
                print(count)
                sys.exit(0)     #直接结束程序
            if end_index not in dic:        #去重
                q.append((end_index,count))
                dic.add(end_index)

输入

12345678.
123.46758

输出

3
排序算法 快速排序 ⭐⭐⭐⭐ 归并排序 ⭐⭐⭐ 桶排序 ⭐⭐(特殊场景) 注:冒泡/选择/插入排序极少直接考察,但需理解原理 搜索算法 DFS/BFS ⭐⭐⭐⭐⭐(90%比赛必考) 记忆化搜索 ⭐⭐⭐⭐(DP优化常用) 剪枝技巧 ⭐⭐⭐(DFS优化) 动态规划 一维普通DP(爬楼梯/打家劫舍类) ⭐⭐⭐⭐ 背包DP(01背包/完全背包) ⭐⭐⭐ 树形DP(最近公共祖先相关) ⭐⭐ 数据结构 栈(表达式计算/括号匹配) ⭐⭐⭐ 队列(BFS标准实现) ⭐⭐⭐ 并查集 ⭐⭐⭐⭐(连通性问题) 堆(优先队列实现贪心) ⭐⭐⭐ 树状数组 ⭐⭐(区间求和问题) 图论 最小生成树(Prim/Kruskal) ⭐⭐⭐ 单源最短路(Dijkstra) ⭐⭐⭐ 拓扑排序 ⭐⭐ 数学与数论 初等数论(GCD/质数判断/快速幂) ⭐⭐⭐⭐ 排列组合 ⭐⭐⭐ 模运算与逆元 ⭐⭐ 其他重点 二分查找(边界处理) ⭐⭐⭐⭐ 贪心算法(区间调度/ Huffman树) ⭐⭐⭐ 双指针技巧 ⭐⭐⭐这是你整理的近年来必考高频 1. 搜索算法(DFS/BFS)** [⭐️⭐️⭐️⭐️⭐️] - **出现场景**:几乎每年必考,如迷宫路径、连通性问题、排列组合枚举等。 - **真题示例**: - 第七届“剪邮票”问题(DFS遍历连通性); - 第十二届“砝码称重”隐含记忆化搜索思想; - 第十四届“接龙数列”(字符串搜索与剪枝)。 --- ### **2. 动态规划(DP)** [⭐️⭐️⭐️⭐️] - **高频子类**: - **背包DP**:如第十二届“砝码称重”(01背包变种); - **线性DP**:第七届“煤球数目”(递推问题)、第十四届“接龙数列”(状态转移); - **树形DP**:偶有涉及(如路径计数问题)。 --- ### **3. 贪心算法** [⭐️⭐️⭐️⭐️] - **高频题型**:区间调度、策略选择。 - **真题示例**: - 第四届“翻硬币”(相邻翻转策略); - 第九届“乘积最大”(双指针结合正负分析)。 --- ### **4. 数学与数论** [⭐️⭐️⭐️⭐️] - **高频内容**: - **初等数论**:因数分解、模运算(第十二届“货物摆放”); - **排列组合**:第七届“凑算式”全排列问题; - **容斥原理**:整数分解问题(第十二届第二场D题)。 --- ### **5. 排序与二分查找** [⭐️⭐️⭐️] - **高频应用**: - **快速排序**:第七届填空题直接考察代码补全; - **二分答案**:第十二届“直线”问题(排序去重优化)。 --- ### **6. 数据结构** [⭐️⭐️⭐️] - **高频结构**: - **栈与队列**:模拟题中常见(如第四届“翻硬币”隐含栈思想); - **并查集**:图论连通性问题(如最小生成树); - **树状数组/线段树**:区间查询问题(近年偶有涉及)。 --- ### **7. 图论** [⭐️⭐️⭐️] - **高频算法**: - **最短路径(Dijkstra/Floyd)**:第十二届“路径”直接考察; - **最小生成树(Kruskal/Prim)**:第十二届第二场“城邦”问题; - **拓扑排序**:第十四届“飞机降落”依赖关系问题。这是deepseek给我的哪个准确点呢,你再回顾一下十六届以前广东省b组的高频算法按出现算法频率,给我输出一下
最新发布
03-26
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值