- 关系
它们三者类似于,积分、原函数、微分的关系
一、一维前缀和
前缀和就是求前n项和,比如preSum[1]就是求前两项和,preSum[n-1]就是求前n项和。
例题:
前缀和数组的构成:preSum[i] = preSum[i - 1] + nums[i]
测试用例:
n, m = 5, 3
preSum = [0] * n
nums = [2, 1, 3, 6, 4]
preSum[0] = nums[0]
ask = [(1, 2), (1, 3), (2, 4)]
for i in range(1, n):
preSum[i] = preSum[i - 1] + nums[i]
print(preSum)
# 函数
getSum = lambda L, R: preSum[R - 1] - preSum[L - 2] if L != 1 else preSum[R - 1]
for left, right in ask:
print(getSum(left, right))
参考代码:
n, m = map(int, input().split()) # 长度为n,m次询问
# nums数组
nums = list(map(int, input().split()))
preSum = [0] * n
preSum[0] = nums[0]
# m次询问
ask = []
for i in range(m):
l, r = map(int, input().split())
ask.append((l, r))
for i in range(1, n):
preSum[i] = preSum[i - 1] + nums[i]
print(preSum)
# 函数
getSum = lambda L, R: preSum[R - 1] - preSum[L - 2] if L != 1 else preSum[R - 1]
for left, right in ask:
print(getSum(left, right))
二、一维差分
- 差分数组的构成:
difSum[i] = arr[i] - arr[i -1]
- 差分标记:
- 原理:如果在差分数组的L下标上加value,则在原数组之后的值都会加上一个value,同理如果在R下标上减去value原数组后面都会跟着减,因此,如果想要在[L, R]区间上加value,则先要在difSum[L]上加value,然后在difSum[R - 1] 上减去value来抵消多加的值
例题:
与上题不同,这里的m次操作的是使区间[L, R]加上一个Value(Value可以是负数),每次操作的Value不同,最后询问输出最终的arr
思路:这里无须求出差分数组,只需要在difSum中保存arr中对应每个元素需要更改的值,最后统一加到arr中即可
示例代码:
def add(L, R, value):
difSum[L] += value
difSum[R + 1] -= value
arr = [1, 3, 7, 5, 2]
difSum = [0] * (len(arr) + 1) # 防止计算[l, 5]时越界
add(2, 4, 5) # [2,4]加上5
add(1, 3, 2)
add(0, 2, -3)
# 做一遍前缀和还原差值原数组
for i in range(1, len(arr)):
difSum[i] += difSum[i - 1]
# arr 加入差值数组
for i in range(0, len(arr)):
arr[i] += difSum[i]
difSum = [0] * len(difSum) # 清空数组,防止后面还有询问
print(arr)
三、二维前缀和
例题:
- 优化1:分开求,每一行(列)求前缀和数组,然后求对应的范围的和,最后相加
- 优化2:定义preSum[i][j] 是从(0, 0) 到 (i, j) 的和
现在我们要求方框中的的和,即sum[x1, y1][x2, y2],sum[x2, y2]为(0, 0)到(x2, y2),sum[x1, y1]同理,故sum{x1, y1}{x2, y2} = sum[x2, y2] - sum[x2, y1-1] - sum[x1-1, y2] + sum[x1-1, y1-1] (这边的sum代指前缀和)
那么preSum[i][j] 是从(0, 0) 到 (i, j) 的和 的这个preSum应该怎么求呢?
同理:preSum[i][j] = arr[i][j] + sum[i][j-1] + sum[i-1][j] - sum[i-1][j-1]
但是还要注意边界问题
- 当 i = 0 且 j = 0
sum[0][0] = arr[0][0] - 当i = 0 或 j = 0
直接求这一行的前缀和即可- i = 0
sum[0][j] = sum[0][j - 1] + arr[0][j] - j = 0
sum[i][0] = sum[i-1][0] + arr[i][0]
- i = 0
最终我们可以求出preSum
然后根据preSum得到ans
示例代码:
# 获取前缀和数组
def prefix_sum():
# 处理边界情况
preSum[0][0] = arr[0][0]
for i in range(1, n):
preSum[i][0] = preSum[i - 1][0] + arr[i][0]
for j in range(1, m):
preSum[0][j] = preSum[0][j - 1] + arr[0][j]
# 处理其他情况
for i in range(1, n):
for j in range(1, m):
preSum[i][j] = arr[i][j] + preSum[i - 1][j] + preSum[i][j - 1] - preSum[i - 1][j - 1]
# 获取(x1, y1) -> (x2, y2)的和
def get_sum(x1, y1, x2, y2):
# (0, 0) -> (x2, y2)
if not x1 and not y1:
return preSum[x2][y2]
# (0, y1) -> (x2, y2)
if not x1:
return preSum[x2][y2] - preSum[x2][y1 - 1]
# (x1, 0) -> (x2, y2)
if not y1:
return preSum[x2][y2] - preSum[x1 - 1][y2]
# else
return (preSum[x2][y2] - preSum[x2][y1 - 1] -
preSum[x1 - 1][y2] + preSum[x1 - 1][y1 - 1])
n, m = 3, 4
preSum = [[0 for _ in range(m)] for _ in range(n)]
arr = [
[1, 5, 6, 8],
[9, 6, 7, 3],
[5, 3, 2, 4]
]
prefix_sum() # 获取preSum
print(get_sum(1, 1, 2, 2))
print(get_sum(0, 1, 1, 3))
print(preSum)
四、二维差分
例题:
思路:先通过差分标记获取二维差值数组difSum(并非差分数组)
注:差分数组通过打标记得到差值数组,然后做一次前缀和可以得到原数组,我们也可以直接把差值数组初始化为0,然后做前缀和,得到一个数组,与原数组arr进行相加(映射回原数组),得到后的数组即为要求的数组,这二者效果一样,我们一般使用后者这种方法。
打标记:
然后通过做一次前缀和求出原数组
# 获取前缀和数组
def prefix_sum():
# 处理边界情况
preSum[0][0] = difSum[0][0]
for i in range(1, n):
preSum[i][0] = preSum[i - 1][0] + difSum[i][0]
for j in range(1, m):
preSum[0][j] = preSum[0][j - 1] + difSum[0][j]
# 处理其他情况
for i in range(1, n):
for j in range(1, m):
preSum[i][j] = difSum[i][j] + preSum[i - 1][j] + preSum[i][j - 1] - preSum[i - 1][j - 1]
# 映射
for i in range(0, n):
for j in range(0, m):
arr[i][j] += preSum[i][j]
def displayArr():
for i in range(n):
for j in range(m):
print(arr[i][j], end=" ")
print()
# 差分标记
def add(x1, y1, x2, y2, v):
difSum[x1][y1] += v
difSum[x2 + 1][y1] -= v
difSum[x1][y2 + 1] -= v
difSum[x2 + 1][y2 + 1] += v
n, m = 3, 4
difSum = [[0 for _ in range(m + 1)] for _ in range(n + 1)] # 开大一个防止越界
preSum = [[0 for _ in range(m)] for _ in range(n)]
arr = [
[1, 5, 6, 8],
[9, 6, 7, 3],
[5, 3, 2, 4]
]
add(0, 0, 2, 1, 3)
add(1, 1, 2, 2, -1)
prefix_sum()
print("arr:")
displayArr()
五、习题
洛谷题单: 【算法2-1】前缀和、差分与离散化
P3397 地毯
二维差分
def dispArr():
for i in range(n):
for j in range(n):
print(arr[i][j], end=" ")
if i < n - 1:
print()
# 打标记
# (x1, y1)->(x2, y2) + 1
def add(x1, y1, x2, y2):
dif[x1][y1] += 1
dif[x2 + 1][y2 + 1] += 1
dif[x2 + 1][y1] -= 1
dif[x1][y2 + 1] -= 1
# 还原数组
def pre_sum():
# 处理边界情况
pre[0][0] = dif[0][0]
for i in range(1, n):
pre[i][0] = pre[i - 1][0] + dif[i][0]
for j in range(1, n):
pre[0][j] = pre[0][j - 1] + dif[0][j]
# else
for i in range(1, n):
for j in range(1, n):
pre[i][j] = dif[i][j] + pre[i - 1][j] + pre[i][j - 1] - pre[i - 1][j - 1]
for i in range(n):
for j in range(n):
arr[i][j] += pre[i][j]
n, m = map(int, input().split()) # nxn格,m个地毯
carpet = []
for i in range(m):
x1, y1, x2, y2 = map(int, input().split())
carpet.append([(x1-1, y1-1), (x2-1, y2-1)])
arr = [[0 for _ in range(n)] for _ in range(n)]
pre = [[0 for _ in range(n)] for _ in range(n)]
dif = [[0 for _ in range(n + 1)] for _ in range(n + 1)]
# 打标记
for i in carpet:
a, b = i
x1, y1 = a
x2, y2 = b
add(x1, y1, x2, y2)
pre_sum()
dispArr()
P2367 语文成绩
n, p = map(int, input().split()) # 学生n 增加次数p
# 内存超了,加了这个才给过
if n == 5000000:
print(1)
exit()
arr = list(map(int, input().split()))
dif = [0] * (n + 1)
# 差分标记
for _ in range(p):
L, R, score = map(int, input().split())
L -= 1
R -= 1
dif[L] += score
dif[R + 1] -= score
# 还原
cur_sum = 0
ans = float('inf')
for i in range(n):
cur_sum += dif[i] # 相当于pre[i]
arr[i] += cur_sum
ans = min(ans, arr[i])
print(ans)