Given a binary tree, you are supposed to tell if it is a binary search tree. If the answer is yes, try to find the K-th largest key, else try to find the height of the tree.
Format of function:
int CheckBST ( BinTree T, int K );
where BinTree is defined as the following:
typedef struct TNode *BinTree;
struct TNode{
int Key;
BinTree Left;
BinTree Right;
};
The function CheckBST is supposed to return the K-th largest key if T is a binary search tree; or if not, return the negative height of T (for example, if the height is 5, you must return −5).
Here the height of a leaf node is defined to be 1. T is not empty and all its keys are positive integers. K is positive and is never more than the total number of nodes in the tree.
Sample program of judge:
#include <stdio.h>
#include <stdlib.h>
typedef struct TNode *BinTree;
struct TNode{
int Key;
BinTree Left;
BinTree Right;
};
BinTree BuildTree(); /* details omitted */
int CheckBST ( BinTree T, int K );
int main()
{
BinTree T;
int K, out;
T = BuildTree();
scanf("%d", &K);
out = CheckBST(T, K);
if ( out < 0 )
printf("No. Height = %d\n", -out);
else
printf("Yes. Key = %d\n", out);
return 0;
}
/* 你的代码将被嵌在这里 */
Sample Input 1:(for the following tree)
4
Sample Output 1:
Yes. Key = 5
Sample Input 2:(for the following tree)
3
Sample Output 2:
No. Height = 3
Analysis:
用中序遍历得到序列,判断是否二叉树就直接判断序列是否递增,如果不是搜索二叉树,就求树的高度;如果是,则输出倒数第k个数,即为第k大的数。
Notice:
- 输出倒数第k个数,先遍历一遍序列得到该序列一共有count个数,则倒数第k个的表达为(count-k)。
- 如果对中序遍历得到序列还不清楚,可以去看是否二叉搜索树,在这篇文章中我对中序遍历得到序列有具体分析。
Code:
//先判断是否为搜索二叉树,如果是就返回第K大的结点数值;不是就返回负值的树高(叶结点的定义高度为1)
int GetHeight(BinTree T)
{
int HL,HR,Max;
if(T)
{
HL=GetHeight(T->Left);
HR=GetHeight(T->Right);
if(HL>HR) Max=HL;
else Max=HR;
return Max+1;
}
else return 0;
}
int CheckBST ( BinTree T, int K )
{
int flag=1;
//中序法得到顺序序列
BinTree BT=T;
BinTree a[100]={NULL},b[100]={NULL};
int ai=0,bi=0;
while(BT||ai!=0)
{
//先处理左子树
while(BT)//一路找到左子树最后一个元素,并把经过的结点压入堆栈
{
a[ai++]=BT;
BT=BT->Left;
}
if(a[ai-1]==NULL)
ai--;
int top=--ai;//取栈顶元素的下标
b[bi++]=a[top];//把栈顶元素储存在b[]数组里
BT=a[top];//重新赋值BT,相当于中序遍历里的输出根结点数据
a[top]=NULL;//删除栈顶元素(与上面的if(a[ai-1]==NULL)一起构成)
BT=BT->Right;//转向右子树
}
//判断是否为二叉树,直接判断序列内的数是否是递增
//从下标为1的结点开始判断:前一个结点的Key是否大于当前结点的Key,是的话则该序列不可能为递增
for(int i=1;b[i]!=NULL;i++)
{
if((b[i-1]->Key)>=(b[i]->Key))
{
flag=0;//不是搜索二叉树
break;
}
}
if(flag==1)//如果是搜索二叉树就返回第K大的数
return b[bi-K]->Key;
else//否则,返回负值的树高
return -GetHeight(T);
}