AI For Everyone -Andrew Ng - week 1

Week 1 What is AI?

Lesson 1 : Introduction

Lesson 2 Machine Learning 

In summary, supervised learning just learns input, output, or A to B mappings. On one hand, input, output A to B seems quite limiting.But when you find the right application scenario, this turns out to be incredibly valuable.

The most important idea in AI has been machine learning and specifically, supervised learning, which means A to B or input output mappings. What enables it to work really well is data. 

Lesson 3 What is the data?

 think through what is the data that is actually the most valuable

Germs of AI today is used primarily to generate unstructured data, such as text, images, and audio, rather than structured data. In contrast, supervised learning can work very well for both of these types of data, unstructured data and structured data. 

Lesson 4 AI terminology

  • it's a piece of software that any time of day, any time of night, can automatically input A these properties of a house and output B. So if you have an AI system running serving dozens or hundreds of thousands of millions of users, that's usually a machine learning system.
  • a data science project is a set of insights that can help you make business decisions, such as what type of house to build or whether to invest in renovation.  

Lesson 5 What makes an AI company?

  • many great AI companies have preemptively invested in bringing the data together into single data warehouse to increase the odds that the teams can connect the dots.
  • An Internet company is a company that does the thing that internet lets you do really well. 
  • AI companies are very good at strategic data acquisition. This is why many of the large consumer tech companies may have three products that do not monetize and it allows them to acquire data that they can monetize elsewhere. Serve less strategy teams where we would deliberately launch products that do not make any money just for the sake of data acquisition.

This is the five-step AI transformation playbook that recommended to companies that want to become effective at using AI.

Step one is to execute pilot projects(试点项目) to gain momentum

just to a few small projects to get a better sense of what AI can or cannot do and get a better sense of what doing an AI project feels like.

Step two which is the building in house AI team and provide broad AI training

not just to the engineers but also to the managers, division leaders and executives and how they think about AI.

Step three have a better sense of what AI is and then is important for many companies to develop an AI strategy.

Finally, to align internal and external communications so that all your stakeholders from employees, customers and investors are aligned with how your company is navigating the rise of AI. 

Lesson 6 What machine learning can and cannot do

The main problem with this application, is that, the past history of a stock price is just not very predictive of the future stock price, which is why attempts to use machine learning this way haven't been successful. 

Future stock prices are so random that it's just hard for AI to predict it accurately. By the way, for completeness, I should say that predicting stock price based only on the historical price of the same stock seems to be impossible, but there are stock traders that sometimes find other inputs. For example, if they managed to legally obtain some web traffic or foot traffic data that helps them estimate what the company's sales were, then that, in combination with the historical price data, might make it possible for the algorithm to have some predictive power, however, these other inputs are typically complex or costly to acquire, and still can't overcome the intrinsically, somewhat random nature of the stock market.

Lesson 7 More examples of what machine learning can and cannot do

 if you were to try to build a system to learn the A to B mapping, where the input A is a short video of our human gesturing at your car, and the output B is, what's the intention or what does this person want, that today is very difficult to do. Part of the problem is that the number of ways people gesture at you is very, very large. Imagine all the hand gestures someone could conceivably use asking you to slow down or go, or stop. The number of ways that people could gesture at you is just very, very large. So, it's difficult to collect enough data from enough thousands or tens of thousands of different people gesturing at you, and all of these differentways to capture the richness of human gestures. 

Lesson 7 Non-technical explanation of deep learning (Part 1, optional)​​​​​​​

It's a group of artificial neurons, each of which computes a relative simple function. But when you stack enough of them together, like lego breaks, they can compute incredibly complicatedfunctions that give you very accurate mappings from the input A to the output B

Lesson 8 Non-technical explanation of deep learning (Part 2, optional)

Reference

AI For Everyone - What is AI? - Week 1 | Coursera

### 回答1: Coursera-ml-andrewng-notes-master.zip是一个包含Andrew Ng机器学习课程笔记和代码的压缩包。这门课程是由斯坦福大学提供的计算机科学和人工智能实验室(CSAIL)的教授Andrew Ng教授开设的,旨在通过深入浅出的方式介绍机器学习的基础概念,包括监督学习、无监督学习、逻辑回归、神经网络等等。 这个压缩包中的笔记和代码可以帮助机器学习初学者更好地理解和应用所学的知识。笔记中包含了课程中涉及到的各种公式、算法和概念的详细解释,同时也包括了编程作业的指导和解答。而代码部分包含了课程中使用的MATLAB代码,以及Python代码的实现。 这个压缩包对机器学习爱好者和学生来说是一个非常有用的资源,能够让他们深入了解机器学习的基础,并掌握如何运用这些知识去解决实际问题。此外,这个压缩包还可以作为教师和讲师的教学资源,帮助他们更好地传授机器学习的知识和技能。 ### 回答2: coursera-ml-andrewng-notes-master.zip 是一个 Coursera Machine Learning 课程的笔记和教材的压缩包,由学生或者讲师编写。这个压缩包中包括了 Andrew Ng 教授在 Coursera 上发布的 Machine Learning 课程的全部讲义、练习题和答案等相关学习材料。 Machine Learning 课程是一个介绍机器学习的课程,它包括了许多重要的机器学习算法和理论,例如线性回归、神经网络、决策树、支持向量机等。这个课程的目标是让学生了解机器学习的方法,学习如何使用机器学习来解决实际问题,并最终构建自己的机器学习系统。 这个压缩包中包含的所有学习材料都是免费的,每个人都可以从 Coursera 的网站上免费获取。通过学习这个课程,你将学习到机器学习的基础知识和核心算法,掌握机器学习的实际应用技巧,以及学会如何处理不同种类的数据和问题。 总之,coursera-ml-andrewng-notes-master.zip 是一个非常有用的学习资源,它可以帮助人们更好地学习、理解和掌握机器学习的知识和技能。无论你是机器学习初学者还是资深的机器学习专家,它都将是一个重要的参考工具。 ### 回答3: coursera-ml-andrewng-notes-master.zip是一份具有高价值的文件,其中包含了Andrew Ng在Coursera上开授的机器学习课程的笔记。这份课程笔记可以帮助学习者更好地理解掌握机器学习技术和方法,提高在机器学习领域的实践能力。通过这份文件,学习者可以学习到机器学习的算法、原理和应用,其中包括线性回归、逻辑回归、神经网络、支持向量机、聚类、降维等多个内容。同时,这份笔记还提供了很多代码实现和模板,学习者可以通过这些实例来理解、运用和进一步深入研究机器学习技术。 总的来说,coursera-ml-andrewng-notes-master.zip对于想要深入学习和掌握机器学习技术和方法的学习者来说是一份不可多得的资料,对于企业中从事机器学习相关工作的从业人员来说也是进行技能提升或者知识更新的重要资料。因此,对于机器学习领域的学习者和从业人员来说,学习并掌握coursera-ml-andrewng-notes-master.zip所提供的知识和技能是非常有价值的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值