微调框架概述
模型的微调有多种方式,对于入门的来说,一般都是基于官方的文档微调;最近发现很多开源库,其目的就是支持应用多种微调策略来微调模型,简化模型的微调门槛。比如 ChatGLM-Efficient-Tuning、LLaMA-Factory。其架构逻辑如下:
最近试玩了这两个框架,个人觉得蛮好的,先不说实际的调试效果,这取决于多种因素,总的来说还是很方便快捷的。方便快捷的基于多种微调策略调试LLM;同时支持多种数据集类型。
LLaMA-Factory
这个开源库相比较其余的库,更全面,更方便。有如下几点我是比较喜欢的。
-
训练方法
- 如图,多种训练方法都支持,很全面。不过这里的预训练,我理解为是增量预训练;即准备大量的文本数据训练。
- 支持全参数、部分参数、LoRA等策略微调。
- 降低门槛,一键训练。对于学习来说,可以增加知识面及使用。
-
数据集
- 支持多种数据集:增量预训练数据集、指令微调数据集、偏好数据集;在官方文档都是有说明的。
- 每次微调前,我都需要斟酌数据集的准备、格式等;但开源库已经准备的很齐全而且各种场景的数据格式都有,直接参考即可;比如单轮对话、多轮对话、指令格式等等。这就极大的方便了数据集的准备。
-
其它
- 当然还有分布式训练、web界面操作等等
ChatGLM-Finetuning
Finetuning是专门基于GLM系列的微调库,我个人也试用,还是很方便快速的,而且文档比较清晰,只是在部署时比较简陋,但对于要学习了解微调及LLM一些原理来说,还是很适合入门钻研的。
应用
目前绝大多数的大模型都是基于基座模型(GLM、QWen、LlaMa、BaiChuan)等微调训练而来,不过实现的逻辑却是有多种,要么基于官方的微调文档,要么基于开源微调库实现。CareGPT就是基于开源微调库LLaMA-Factory实现的医疗领域大模型。其架构设计如下:
在其架构设计中,有两个部分比较值得关注:
-
微调框架的集成
- 通过集成了微调框架,调用底层具备的能力,准备多种格式的数据集微调模型。
-
数据开放
- 基于开源医疗数据集,准备增量预训练预料、指令监督预料、SFT预料等等;扩充基座模型的领域知识能力。
总结
基于个人使用及学习的角度,介绍了微调框架的概述及其应用。在这里面的道道还是蛮多的,有一定的大模型知识再基于这些库去做参考去做应用,将极大的降低LLM的应用门槛。更有甚者可以了解底层的实现逻辑。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓