一、准备工作
1、前期已经安装好了Hadoop,并且HDFS和YARN服务能正常运行;
2、flume的安装包,apache-flume-1.9.0-bin.tar.gz;
3、远程连接设备xftp8和xshell8;
4、保证主机的网络通畅;
二、上传并解压
1、上传
通过xftp8将本地已经下载好的flume安装包上传至Hadoop1中
2、解压
命令如下:
tar -zxvf apache-flume-1.9.0-bin.tar.gz -C /export/servers/
3、重命名
(1)切换目录,命令如下:
cd /export/servers
(2)重命名,命令如下:
mv apache-flume-1.9.0-bin flume-1.9.0
三、配置环境变量
vi /etc/profile
# 添加内容如下:
export FLUME_HOME=/export/servers/flume-1.9.0
export PATH=$PATH:$FLUME_HOME/bin
#配置完成后,初始化环境变量:
source /etc/profile
四、分发
1、分发Hadoop1上的flume-1.9.0的配置文件
scp -r /export/servers/flume-1.9.0 hadoop2:/export/servers/
scp -r /export/servers/flume-1.9.0 hadoop3:/export/servers/
2、分发Hadoop1上的环境变量
scp /etc/profile hadoop2:/etc/profile
scp /etc/profile hadoop3:/etc/profile
3、初始化环境变量
分发完成后,到Hadoop2、Hadoop3中初始化环境变量:
source /etc/profile
五、编写采集方案
1、编写Hadoop1的采集方案
cd /export/servers/flume-1.9.0/conf/
vi exec-avro.conf
#编辑内容如下:
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1
a1.sources.r1.channels = c1
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /export/data/123.log
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.sinks.k1.channel = c1
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = hadoop2
a1.sinks.k1.port = 53421
a1.sinks.k2.channel = c1
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = hadoop3
a1.sinks.k2.port = 53421
a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinkgroups.g1.processor.type = load_balance
a1.sinkgroups.g1.processor.backoff = true
a1.sinkgroups.g1.processor.selector = random
a1.sinkgroups.g1.processor.maxTimeOut=10000
2、编写Hadoop2的采集方案
cd /export/servers/flume-1.9.0/conf/
vi avro-logger1.conf
# 编辑内容如下:
a1.sources = r1
a1.sinks = k1
a1.channels = c1
a1.sources.r1.type = avro
a1.sources.r1.bind = hadoop2
a1.sources.r1.port = 53421
a1.sinks.k1.type = logger
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
3、编写Hadoop3的采集方案
cd /export/servers/flume-1.9.0/conf/
vi avro-logger2.conf
# 编辑内容如下:(除第五行的hadoop3,其余地方与hadoop2相同)
a1.sources = r1
a1.sinks = k1
a1.channels = c1
a1.sources.r1.type = avro
a1.sources.r1.bind = hadoop3
a1.sources.r1.port = 53421
a1.sinks.k1.type = logger
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
六、采集数据
1、Hadoop2开始采集
source /etc/profile
cd /export/servers/flume-1.9.0/
flume-ng agent --name a1 --conf conf/ --conf-file conf/avro-logger1.conf -Dflume.root.logger=INFO,console
2、Hadoop3开始采集
source /etc/profile
cd /export/servers/flume-1.9.0/
flume-ng agent --name a1 --conf conf/ --conf-file conf/avro-logger1.conf -Dflume.root.logger=INFO,console
3、Hadoop1开始采集
source /etc/profile
cd /export/servers/flume-1.9.0/
flume-ng agent --name a1 --conf conf/ --conf-file conf/exec-avro.conf -Dflume.root.logger=INFO,console
4、hadoop1 的命令行执行
(注:再在xshell8中打开一个Hadoop1的端口执行)
while true;do echo "lxz flume flume ..." >> /export/data/123.log;sleep 1;done
最后可以用CTRL+C结束掉采集的进程.