bfs的特点是逐层扩展,从源头到目标点扩展了几层,最短的路径就是多少
bfs使用的特征是 任意两个节点之间的相互距离是相同的(无向图)
bfs开始时,可以是单个源头,也可以是多个源头
bfs和队列结合使用,可以是单点弹出队列,也可以是整层弹出
bfs进行时,需要将进入的节点标记状态,防止同一个节点重复进出队列
bfs进行时,可能会有剪枝策略
class Solution {
public:
static const int maxnum = 101;
int queue[maxnum * maxnum][2];
bool visit[maxnum][maxnum];
int move[5] = {-1, 0, 1, 0, -1};//常用的移动方向的技巧
int maxDistance(vector<vector<int>>& grid) {
int n = grid.size();
int seas = 0;
int m = grid[0].size();
int l = 0, r = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (grid[i][j] == 1) {
visit[i][j] = true;//陆地标为true
queue[r][0] = i;
queue[r++][1] = j;
} else {
visit[i][j] = false;
seas++;
}
}
}
if (seas == 0 || seas == n * n)
return -1;
int level = 0;
while (l < r) {
level++;
int size = r - l;//逐层展开
for (int i = 0; i < size; i++) {
int x = queue[l][0];
int y = queue[l++][1];
for (int j = 0; j < 4; j++) {
int nx = x + move[j];
int ny = y + move[j + 1];
if (nx >= 0 && nx < n && ny >= 0 && ny < n &&
visit[nx][ny] == false) {
visit[nx][ny] = true;
queue[r][0] = nx;
queue[r++][1] = ny;
}
}
}
}
return level - 1;
}
};
时间复杂度为O(m*n)
class Solution {
public:
static const int maxnum = 401;
vector<vector<string>> pragh;
void build() {//将包含某字母的字符串放在一起
for (int i = 0; i < 26; i++)
pragh.push_back(vector<string>());
}
void getnewstring(string& s) {//将字符串按字典序排序
int n = s.size();
vector<char> rem(n, 'a');
for (int i = 0; i < n; i++) {
rem[i] = s[i];
}
sort(rem.begin(), rem.end());
for (int i = 0; i < n; i++)
s[i] = rem[i];
}
string nextstring(string s, string us) {//删除后的字符串
string ans;
int i = 0, j = 0;
for (i = 0, j = 0; i < s.size() && j < us.size();) {
if (s[i] == us[j]) {
i++;
j++;
} else if (s[i] < us[j]) {
ans += s[i];
i++;
} else
j++;
}
while (i < s.size()) {
ans += s[i++];
}
return ans;
}
int minStickers(vector<string>& stickers, string target) {
build();
getnewstring(target);
for (int i = 0; i < stickers.size(); i++) {
getnewstring(stickers[i]);
for (int j = 0; j < stickers[i].size(); j++) {
if (j == 0 || stickers[i][j] != stickers[i][j - 1])
pragh[stickers[i][j] - 'a'].push_back(stickers[i]);
}
}
string queue[maxnum];
int l = 0, r = 0;
unordered_set<string> visit;
queue[r++] = target;
int level = 1;
while (l < r) {
int size = r - l;
for (int i = 0; i < size; i++) {
string cur = queue[l++];
for (auto j : pragh[cur[0] - 'a']) {
string next = nextstring(cur, j);//下一个字符串
if (next.size() == 0)
return level;
else {
if (visit.find(next) == visit.end()) {
visit.insert(next);//记录,防止重复记录
queue[r++] = next;
}
}
}
}
level++;
}
return -1;
}
};
一个字符串cur如果被stickers里面的字符串贴完后,得到下一级字符串,这就和bfs一层一层遍历一样,最后第一次被贴完就是用的最少贴纸。这题优化点在于可以进行剪枝,我们先把target字符串按字典序排序,按照字符串首字母进行删除,不要开始将target用stickers里的字符串全部贴一遍,因为不管怎么贴,target里的每种字符最后都会被贴完,所以用含字符串首字母的stickers里的字符串贴,可以减少路径
0-1bfs ,适用于图中所有边的权重只有0和1两种值,求从原点到目标点最短的路径
时间复杂度为O(节点的数量+边的数量)。此类问题不可以用传统的bfs解决
过程:
1.distance[i]表示从源点到i点的最短距离,初始时所有的点的距离设置为无穷大
2.源点进入双端队列,distance[源点]设置初始值;
3.双端队列头部弹出x:
1)如果x是目标节点,返回distance[x]
2)考察从x出发的每一条边,假设某边去y点,边权为w
如果w==0,y从头部进入双端队列,重复步骤3
如果w==1,y从尾部进入双端队列,重复步骤3
4.直至双端队列为空为止
此时distance数组就代替的visited数组的作用
class Solution {
public:
int move[5] = {-1, 0, 1, 0, -1};
static const int maxnum = 100001;
int minimumObstacles(vector<vector<int>>& grid) {
int m = grid.size();
int n = grid[0].size();
int distance[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
distance[i][j] = INT_MAX;
}
}
vector<vector<int>> deque(maxnum * 2, vector<int>());
int l = maxnum, r = maxnum;
deque[r++] = {0, 0};
distance[0][0] = 0;
while (l < r) {
int x = deque[l][0];
int y = deque[l++][1];
if (x == m - 1 && y == n - 1)
return distance[x][y];
for (int i = 0; i < 4; i++) {
int nx = move[i] + x;
int ny = move[i + 1] + y;
if (nx >= 0 && nx < m && ny >= 0 && ny < n &&
distance[nx][ny] >
(long long)grid[nx][ny] + distance[x][y]) {
distance[nx][ny] = grid[nx][ny] + distance[x][y];
if (grid[nx][ny] == 0)
deque[--l] = {nx, ny};
else
deque[r++] = {nx, ny};
}
}
}
return -1;
}
};
class Solution {
public:
int minCost(vector<vector<int>>& grid) {
vector<vector<int>> move = {{0}, {0, 1}, {0, -1}, {1, 0}, {-1, 0}};
int m = grid.size();
int n = grid[0].size();
deque<vector<int>> de;
int distance[m][n];
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
distance[i][j] = INT_MAX;
}
}
de.push_back({0, 0});
distance[0][0] = 0;
while (!de.empty()) {
vector<int> rem = de.front();
de.pop_front();
int x = rem[0];
int y = rem[1];
if (x == m - 1 && y == n - 1)
return distance[x][y];
for (int i = 1; i <= 4; i++) {
int nx = x + move[i][0];
int ny = y + move[i][1];
int weight = grid[x][y] != i ? 1 : 0;
if (nx >= 0 && nx < m && ny >= 0 && ny < n &&
distance[x][y] + weight < distance[nx][ny]) {
distance[nx][ny] = distance[x][y] + weight;
if (weight == 0)
de.push_front({nx, ny});
else
de.push_back({nx, ny});
}
}
}
return -1;
}
};
和"打通障碍"的过程基本一致,唯一的区别是打通障碍中每个点的权值是"静态的",它只跟初始的设置有关;而此题中每个点的权值跟到这个点之前的点的方向有关
bfs可以和堆结构结合使用
class Solution {
public:
int move[5]={-1,0,1,0,-1};
int trapRainWater(vector<vector<int>>& heightMap) {
int n=heightMap.size();
int m=heightMap[0].size();
auto cmp=[](vector<int>a,vector<int>b){return a[2]>b[2];};
priority_queue<vector<int>,vector<vector<int>>,decltype(cmp)>re(cmp);
bool visit[n][m];
for(int i=0;i<n;i++){
for(int j=0;j<m;j++){
if(i==0||i==n-1||j==0||j==m-1){
re.push({i,j,heightMap[i][j]});
visit[i][j]=true;
}
else visit[i][j]=false;
}
}
int ans=0;
while(!re.empty()){
vector<int>rem=re.top();
re.pop();
int x=rem[0];
int y=rem[1];
int level=rem[2];
ans+=level-heightMap[x][y];
for(int i=0;i<4;i++){
int nx=x+move[i];
int ny=y+move[i+1];
if(nx>=0&&nx<n&&ny>=0&&ny<m&&!visit[nx][ny]){
re.push({nx,ny,max(heightMap[nx][ny],level)});
visit[nx][ny]=true;
}
}
}
return ans;
}
};
首先最外围的点是不会积水的,他们的水线就是他们的高度(只不过水流走了而已),而外围水线越低,内部的水越容易流走,所以从水线较低的地方开始,逐层的向内求出个点的水线,累加水量即可
class Solution {
public:
unordered_set<string> next;
unordered_set<string> cur;
unordered_map<string, vector<string>> pragh;
vector<string> path;
vector<vector<string>> ans;
unordered_set<string> dic;
void build(vector<string>& wordList) {
next.clear();
cur.clear();
pragh.clear();
path.clear();
ans.clear();
dic = unordered_set<string>(wordList.begin(), wordList.end());
}
bool bfs(string beginWord, string endWord) {
bool findone = false;
cur.insert(beginWord);
while (!cur.empty()) {
for (auto i : cur)//删掉遍历过的string
dic.erase(i);
for (auto str : cur) {//不停的去找下一层string
for (int i = 0; i < str.size(); i++) {
char a = str[i];
string s = str;
for (char ch = 'a'; ch <= 'z'; ch++) {
s[i] = ch;
if (dic.find(s) != dic.end() && s != str) {
if (s == endWord)
findone = true;//当找到target时就找到了最短路径
pragh[s].push_back(str);
next.insert(s);
}
}
}
}
if (findone)
return true;
else {
cur = next;
next.clear();
}
}
return false;
}
void dfs(string endWord, string beginWord) {
path.insert(path.begin(), endWord);//首插
if (endWord == beginWord)
ans.push_back(path);
else if (pragh.find(endWord) != pragh.end()) {
for (auto str : pragh[endWord])
dfs(str, beginWord);
}
path.erase(path.begin());//首删
}
vector<vector<string>> findLadders(string beginWord, string endWord, vector<string>& wordList) {
build(wordList);
if (dic.find(endWord) == dic.end())
return ans;
if (bfs(beginWord, endWord)) {
dfs(endWord, beginWord);
}
return ans;
}
};
bfs还可以和dfs结合使用,想要找source到target的最短路径,首先用bfs建立target到source的反图,图上source和target的路径是最短的;然后从target向source dfs得到的路径就是最短路径