国创——深度Q学习算法

1. 深度Q学习(Deep Q - Learning)算法概述

- 深度Q - 学习是一种强化学习算法,用于解决马尔可夫决策过程(Markov Decision Processes,MDP)中的最优策略问题。在这种情况下,虚拟人物作为智能体(agent),在环境(environment)中通过一系列的动作(action)来最大化累积奖励(reward)。

- 它基于Q - 学习算法,使用深度神经网络(Deep Neural Network,DNN)来近似Q - 函数(Q - function)。Q - 函数表示在给定状态(state)下采取某个动作的预期长期奖励。

2. 深度Q学习算法的具体实现步骤

- 环境定义

- 确定虚拟人物所处的环境,包括状态空间(所有可能的状态集合)、动作空间(所有可能的动作集合)和奖励机制(根据动作和状态转换给予奖励)。

- 神经网络构建

- 使用Python中的深度学习框架(如TensorFlow或PyTorch)构建一个深度神经网络。这个网络将输入状态,输出每个动作的Q - 值估计。

- 例如,在PyTorch中:


import torch

import torch.nn as nn

import torch.nn.functional as F


class DQN(nn.Module):

    def __init__(self, input_size, output_size):

        super(DQN, self).__init__()

        self.fc1 = nn.Linear(input_size, 128)

        self.fc2 = nn.Linear(128, 128)

        self.fc3 = nn.Linear(128, output_size)



    def forward(self, x):

        x = F.relu(self.fc1(x))

        x = F.relu(self.fc2(x))

        return self.fc3(x)

- 经验回放(Experience Replay)

- 创建一个经验回放缓冲区(通常是一个队列或列表)来存储智能体的经验。经验是一个四元组(state,action,reward,next_state)。

class ReplayBuffer:

    def __init__(self, capacity):

        self.capacity = capacity

        self.buffer = []

        self.position = 0



    def push(self, state, action, reward, next_state):

        if len(self.buffer) < self.capacity:

            self.buffer.append(None)

        self.buffer[self.position]=(state, action, reward, next_state)

        self.position = (self.position + 1) % self.capacity



    def sample(self, batch_size):

        return random.sample(self.buffer, batch_size)



    def __len__(self):

        return len(self.buffer)







- 训练过程

- 初始化Q - 网络( q_network )和目标Q - 网络( target_q_network ,初始参数与 q_network 相同)。

- 在每个时间步:

- 选择一个动作:根据当前状态和Q - 网络,可以使用 epsilon - greedy 策略选择动作。 epsilon - greedy 策略以概率 epsilon 随机选择动作,以概率 1 - epsilon 选择具有最高Q - 值的动作。

- 执行动作,获得奖励和下一个状态。

- 将经验(state,action,reward,next_state)存储到经验回放缓冲区。

- 从经验回放缓冲区中随机采样一批经验。

- 计算目标Q - 值:对于每个采样的经验,目标Q - 值 y_j 的计算如下:

- 如果下一个状态是终止状态(例如任务完成或失败),则 y_j = reward_j 。

- 否则, y_j = reward_j+ gamma * max_{a'} Q(s'_{j}, a'; \theta^{-}) ,其中 gamma 是折扣因子(通常在0到1之间), theta^{-} 是目标Q - 网络的参数。

- 计算损失:使用均方误差(MSE)损失函数,计算预测Q - 值( q_network(state) )和目标Q - 值( y_j )之间的损失。

- 优化Q - 网络:使用优化器(如Adam)根据损失反向传播更新Q - 网络的参数。

- 定期更新目标Q - 网络的参数(例如,每C步将 target_q_network 的参数更新为 q_network 的参数)。

3. 完整的深度Q学习算法示例代码(使用PyTorch和一个简单的虚拟环境示例)


 

import torch

import torch.nn as nn

import torch.nn.functional as F

import random

import numpy as np


# 定义Q - 网络

class DQN(nn.Module):

    def __init__(self, input_size, output_size):

        super(DQN, self).__init__()

        self.fc1 = nn.Linear(input_size, 128)

        self.fc2 = nn.Linear(128, 128)

        self.fc3 = nn.Linear(128, output_size)



    def forward(self, x):

        x = F.relu(self.fc1(x))

        x = F.relu(self.fc2(x))

        return self.fc3(x)



# 经验回放缓冲区

class ReplayBuffer:

    def __init__(self, capacity):

        self.capacity = capacity

        self.buffer = []

        self.position = 0



    def push(self, state, action, reward, next_state):

        if len(self.buffer) < self.capacity:

            self.buffer.append(None)

        self.buffer[self.position]=(state, action, reward, next_state)

        self.position = (self.position + 1) % self.capacity



    def sample(self, batch_size):

        return random.sample(self.buffer, batch_size)



    def __len__(self):

        return len(self.buffer)

4.虚拟环境示例(简单的网格世界,这里只是示例,实际需要根据具体任务定义)

class SimpleEnvironment:

    def __init__(self):

        self.state = np.array([0, 0])

        self.goal = np.array([4, 4])


    def step(self, action):

        # 动作:0 - 上,1 - 下,2 - 左,3 - 右

        if action == 0:

            self.state[0] = max(self.state[0] - 1, 0)

        elif action == 1:

            self.state[0] = min(self.state[0] + 1, 4)

        elif action == 2:

            self.state[1] = max(self.state[1] - 1, 0)

        elif action == 3:

            self.state[1] = min(self.state[1] + 1, 4)



        reward = -1

        if np.array_equal(self.state, self.goal):

            reward = 10

            done = True

        else:

            done = False



        return self.state, reward, done





# 深度Q - 学习训练

def train_dqn():

    input_size = 2  # 状态空间维度(这里是简单的2D坐标)

    output_size = 4  # 动作空间维度(4个方向)

    gamma = 0.99

    epsilon_start = 1.0

    epsilon_end = 0.01

    epsilon_decay = 1000

    learning_rate = 0.001

    batch_size = 32

    buffer_capacity = 1000

    target_update = 10



    q_network = DQN(input_size, output_size)

    target_q_network = DQN(input_size, output_size)

    target_q_network.load_state_dict(q_network.state_dict())

    optimizer = torch.optim.Adam(q_network.parameters(), lr = learning_rate)

    replay_buffer = ReplayBuffer(buffer_capacity)



    env = SimpleEnvironment()



    num_episodes = 1000

    for episode in range(num_episodes):

        state = env.state

        state = torch.FloatTensor(state)

        epsilon = epsilon_start - (epsilon_start - epsilon_end) * (episode / epsilon_decay)

        done = False

        while not done:

            if random.random() < epsilon:

                action = random.randint(0, output_size - 1)

            else:

                q_values = q_network(state)

                _, action = torch.max(q_values, 0)

                action = action.item()



            next_state, reward, done = env.step(action)

            next_state = torch.FloatTensor(next_state)

            replay_buffer.push(state, action, reward, next_state)

            state = next_state



            if len(replay_buffer) >= batch_size:

                batch = replay_buffer.sample(batch_size)

                states, actions, rewards, next_states = zip(*batch)

                states = torch.stack(states)

                actions = torch.LongTensor(actions).unsqueeze(1)

                rewards = torch.FloatTensor(rewards).unsqueeze(1)

                next_states = torch.stack(next_states)



                q_pred = q_network(states).gather(1, actions)

                q_next = target_q_network(next_states).max(1)[0].unsqueeze(1)

                target_q = rewards + gamma * q_next

                loss = F.mse_loss(q_pred, target_q)



                optimizer.zero_grad()

                loss.backward()

                optimizer.step()



        if episode % target_update == 0:

            target_q_network.load_state_dict(q_network.state_dict())





if __name__ == "__main__":

    train_dqn()



5.注意

实际应用中需要根据虚拟人物的具体任务来定义复杂的环境、状态、动作和奖励机制

---> 在将深度Q - 学习应用于虚拟人物交互时,

需要将虚拟人物的感知信息作为状态输入

虚拟人物的各种交互行为作为动作输出,并根据人机交互的目标设计合理的奖励机制

# Deep Reinforcement Learning for Keras [![Build Status](https://api.travis-ci.org/matthiasplappert/keras-rl.svg?branch=master)](https://travis-ci.org/matthiasplappert/keras-rl) [![Documentation](https://readthedocs.org/projects/keras-rl/badge/)](http://keras-rl.readthedocs.io/) [![License](https://img.shields.io/github/license/mashape/apistatus.svg?maxAge=2592000)](https://github.com/matthiasplappert/keras-rl/blob/master/LICENSE) [![Join the chat at https://gitter.im/keras-rl/Lobby](https://badges.gitter.im/keras-rl/Lobby.svg)](https://gitter.im/keras-rl/Lobby) ## What is it? `keras-rl` implements some state-of-the art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library [Keras](http://keras.io). Just like Keras, it works with either [Theano](http://deeplearning.net/software/theano/) or [TensorFlow](https://www.tensorflow.org/), which means that you can train your algorithm efficiently either on CPU or GPU. Furthermore, `keras-rl` works with [OpenAI Gym](https://gym.openai.com/) out of the box. This means that evaluating and playing around with different algorithms is easy. Of course you can extend `keras-rl` according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and even algorithms by simply extending some simple abstract classes. In a nutshell: `keras-rl` makes it really easy to run state-of-the-art deep reinforcement learning algorithms, uses Keras and thus Theano or TensorFlow and was built with OpenAI Gym in mind. ## What is included? As of today, the following algorithms have been implemented: - Deep Q Learning (DQN) [[1]](http://arxiv.org/abs/1312.5602), [[2]](http://home.uchicago.edu/~arij/journalclub/papers/2015_Mnih_et_al.pdf) - Double DQN [[3]](http://arxiv.org/abs/1509.06461) - Deep Deterministic Policy Gradient (DDPG) [[4]](http://arxiv.org/abs/1509.02971) - Continuous DQN (CDQN or NAF) [[6]](http://arxiv.org/abs/1603.00748) - Cross-Entropy Method (CEM) [[7]](http://learning.mpi-sws.org/mlss2016/slides/2016-MLSS-RL.pdf), [[8]](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.81.6579&rep=rep1&type=pdf) - Dueling network DQN (Dueling DQN) [[9]](https://arxiv.org/abs/1511.06581) - Deep SARSA [[10]](http://people.inf.elte.hu/lorincz/Files/RL_2006/SuttonBook.pdf) You can find more information on each agent in the [wiki](https://github.com/matthiasplappert/keras-rl/wiki/Agent-Overview). I'm currently working on the following algorithms, which can be found on the `experimental` branch: - Asynchronous Advantage Actor-Critic (A3C) [[5]](http://arxiv.org/abs/1602.01783) Notice that these are **only experimental** and might currently not even run. ## How do I install it and how do I get started? Installing `keras-rl` is easy. Just run the following commands and you should be good to go: ```bash pip install keras-rl ``` This will install `keras-rl` and all necessary dependencies. If you want to run the examples, you'll also have to install `gym` by OpenAI. Please refer to [their installation instructions](https://github.com/openai/gym#installation). It's quite easy and works nicely on Ubuntu and Mac OS X. You'll also need the `h5py` package to load and save model weights, which can be installed using the following command: ```bash pip install h5py ``` Once you have installed everything, you can try out a simple example: ```bash python examples/dqn_cartpole.py ``` This is a very simple example and it should converge relatively quickly, so it's a great way to get started! It also visualizes the game during training, so you can watch it learn. How cool is that? Unfortunately, the documentation of `keras-rl` is currently almost non-existent. However, you can find a couple of more examples that illustrate the usage of both DQN (for tasks with discrete actions) as well as for DDPG (for tasks with continuous actions). While these examples are not replacement for a proper documentation, they should be enough to get started quickly and to see the magic of reinforcement learning yourself. I also encourage you to play around with other environments (OpenAI Gym has plenty) and maybe even try to find better hyperparameters for the existing ones. If you have questions or problems, please file an issue or, even better, fix the problem yourself and submit a pull request! ## Do I have to train the models myself? Training times can be very long depending on the complexity of the environment. [This repo](https://github.com/matthiasplappert/keras-rl-weights) provides some weights that were obtained by running (at least some) of the examples that are included in `keras-rl`. You can load the weights using the `load_weights` method on the respective agents. ## Requirements - Python 2.7 - [Keras](http://keras.io) >= 1.0.7 That's it. However, if you want to run the examples, you'll also need the following dependencies: - [OpenAI Gym](https://github.com/openai/gym) - [h5py](https://pypi.python.org/pypi/h5py) `keras-rl` also works with [TensorFlow](https://www.tensorflow.org/). To find out how to use TensorFlow instead of [Theano](http://deeplearning.net/software/theano/), please refer to the [Keras documentation](http://keras.io/#switching-from-theano-to-tensorflow). ## Documentation We are currently in the process of getting a proper documentation going. [The latest version of the documentation is available online](http://keras-rl.readthedocs.org). All contributions to the documentation are greatly appreciated! ## Support You can ask questions and join the development discussion: - On the [Keras-RL Google group](https://groups.google.com/forum/#!forum/keras-rl-users). - On the [Keras-RL Gitter channel](https://gitter.im/keras-rl/Lobby). You can also post **bug reports and feature requests** (only!) in [Github issues](https://github.com/matthiasplappert/keras-rl/issues). ## Running the Tests To run the tests locally, you'll first have to install the following dependencies: ```bash pip install pytest pytest-xdist pep8 pytest-pep8 pytest-cov python-coveralls ``` You can then run all tests using this command: ```bash py.test tests/. ``` If you want to check if the files conform to the PEP8 style guidelines, run the following command: ```bash py.test --pep8 ``` ## Citing If you use `keras-rl` in your research, you can cite it as follows: ```bibtex @misc{plappert2016kerasrl, author = {Matthias Plappert}, title = {keras-rl}, year = {2016}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/matthiasplappert/keras-rl}}, } ``` ## Acknowledgments The foundation for this library was developed during my work at the [High Performance Humanoid Technologies (H²T)](https://h2t.anthropomatik.kit.edu/) lab at the [Karlsruhe Institute of Technology (KIT)](https://kit.edu). It has since been adapted to become a general-purpose library. ## References 1. *Playing Atari with Deep Reinforcement Learning*, Mnih et al., 2013 2. *Human-level control through deep reinforcement learning*, Mnih et al., 2015 3. *Deep Reinforcement Learning with Double Q-learning*, van Hasselt et al., 2015 4. *Continuous control with deep reinforcement learning*, Lillicrap et al., 2015 5. *Asynchronous Methods for Deep Reinforcement Learning*, Mnih et al., 2016 6. *Continuous Deep Q-Learning with Model-based Acceleration*, Gu et al., 2016 7. *Learning Tetris Using the Noisy Cross-Entropy Method*, Szita et al., 2006 8. *Deep Reinforcement Learning (MLSS lecture notes)*, Schulman, 2016 9. *Dueling Network Architectures for Deep Reinforcement Learning*, Wang et al., 2016 10. *Reinforcement learning: An introduction*, Sutton and Barto, 2011 ## Todos - Documentation: Work on the documentation has begun but not everything is documented in code yet. Additionally, it would be super nice to have guides for each agents that describe the basic ideas behind it. - TRPO, priority-based memory, A3C, async DQN, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值