【深度学习】使用tensorflow实现VGG19网络

【深度学习】使用tensorflow实现VGG19网络

 

 

 

本文章向大家介绍【深度学习】使用tensorflow实现VGG19网络,主要内容包括其使用实例、应用技巧、基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。

 

 

 

 

VGG网络与AlexNet类似,也是一种CNN,VGG在2014年的 ILSVRC localization and classification 两个问题上分别取得了第一名和第二名。VGG网络非常深,通常有16-19层,卷积核大小为 3 x 3,16和19层的区别主要在于后面三个卷积部分卷积层的数量。第二个用tensorflow独立完成的小玩意儿......

 

 

模型结构

可以看到VGG的前几层为卷积和maxpool的交替,每个卷积包含多个卷积层,后面紧跟三个全连接层。激活函数采用Relu,训练采用了dropout,但并没有像AlexNet一样采用LRN(论文给出的理由是加LRN实验效果不好)。

模型定义

def maxPoolLayer(x, kHeight, kWidth, strideX, strideY, name, padding = "SAME"):
    """max-pooling"""
    return tf.nn.max_pool(x, ksize = [1, kHeight, kWidth, 1],
                          strides = [1, strideX, strideY, 1], padding = padding, name = name)

def dropout(x, keepPro, name = None):
    """dropout"""
    return tf.nn.dropout(x, keepPro, name)

def fcLayer(x, inputD, outputD, reluFlag, name):
    """fully-connect"""
    with tf.variable_scope(name) as scope:
        w = tf.get_variable("w", shape = [inputD, outputD], dtype = "float")
        b = tf.get_variable("b", [outputD], dtype = "float")
        out = tf.nn.xw_plus_b(x, w, b, name = scope.name)
        if reluFlag:
            return tf.nn.relu(out)
        else:
            re
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

杨得江-君临天下wyj

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值