0-1 背包问题及其 Java 实现


0-1 背包问题及其 Java 实现

概述

0-1 背包问题是动态规划领域的经典问题之一。在这个问题中,你给定一组物品,每个物品都有一个重量和一个价值,确定在不超过背包承载能力的前提下,如何选取物品以使得总价值最大化。

问题描述

假设有 n 个物品和一个容量为 W 的背包。第 i 个物品的重量为 weight[i],价值为 value[i]。0-1 背包问题的目标是选择一些物品放入背包中,以使得背包中物品的总价值最大,且总重量不超过背包的承载能力。

动态规划解法

我们可以使用动态规划来解决这个问题。基本思想是为每个物品 i(1 ≤ i ≤ n)和每个可能的背包容量 w(0 ≤ w ≤ W),计算在前 i 个物品中选择若干个放入容量为 w 的背包中可以获得的最大价值 dp[i][w]

状态转移方程

[
dp[i][w] = \max(dp[i-1][w], dp[i-1][w-weight[i]] + value[i])
]

  • 如果不选择第 i 个物品,dp[i][w] 就等于 dp[i-1][w]
  • 如果选择第 i 个物品,且其重量为 weight[i],那么 dp[i][w] 就等于 dp[i-1][w - weight[i]] + value[i]

Java 实现

以下是 0-1 背包问题的 Java 代码实现:

public class Knapsack {
   
    public static void main(String[] args) 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值