wcy的j组模拟(4)纠错集

本文介绍了一种基于减半和倍加的乘法模拟方法,并给出了用小木棍拼接正方形所需的最少数量,涉及编程技巧和数学策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

01 部落人乘法(multi.in/.out/.cpp

【问题描述】

据说原始部落人以小石子作为计算工具,用减半和倍加运算就能求得任何两个整数的乘积(注意当然不能
用乘号 * 运算)。例如求 13 与 15 乘积的过程是:
13 15
6 30
3 60
1 120
规则是:左边不断除 2,写下商,舍去余数,右边不断加倍,直到左边变 1 为止。取结果的方法是:如果某
行左边是偶数,就划去整个这一行,右边剩下的数相加即可,如上式中舍去与 6 对应的 30,其结果就是:
13*15=15+60+120=195
请编程模拟他们的方法求输入两数的乘积,并以上式输出结果。
【输入说明】:两个整型数字 n,m
输出说明】:输出结果
输入】:
13 15
输出】:
13*15=15+60+120=195
数据范围
(2≤n,m≤40000)
【核心思想】
1、 基本模拟题,按题意的过程模拟
2、 Mod2 判定余数
3、 注意输出格式

【解析】

这题就是个简单的小模拟,没什么好说的

【核心代码】

#include<bits/stdc++.h>
using namespace std; 
int main(){ 
     int a,b,c,i; 
     cin>>a>>b; 
     c=a*b; 
     cout<<a<<'*'<<b<<"="; //保留格式
     while(a!=1)
     { 
         if(a%2) cout<<b<<'+'; //商为基数保留,偶数省略
         a/=2; 
         b*=2; 
     } 
     cout<<b<<"="<<c; 
     return 0; 
}

02 拼正方形(square.in/.out/.cpp

【问题描述】

现有若干根长度均为 1 厘米的小木棍,用 4 根可以拼成一个边长 1 厘米的正方形 ( 称为单位正方形 ) ,而用 7 根和 10 根小木棍则可以分别拼出两个和三个单位正方形
编程计算用这样的方法拼出 N 个单位正方形需要多少根木棍?要求用最少的根数,例如: 4 个单位正方形,可以用 12 根或 13 根小木棍,最少需 12 根。
输入 N         的值(N\leqslant 10000),输出拼出 N 个单位正方形所用的最少木棍数。
【输入说明 : 一行整型数字表示正方形的个数 N
输出说明 : 所用的最少木棍数
输入 :
4
输出 :
12
数据范围
(1 n 10^9)
### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值