深度学习——图像分类(CNN)—训练模型

1.导入必要的库

pandas as pd: Pandas是一个强大的数据分析和处理库,它提供了数据结构(如DataFrame)和工具,用于数据操作和分析。
tensorflow.keras.preprocessing.image import ImageDataGenerator: ImageDataGenerator是Keras的一部分,它用于图像数据的预处理和增强,例如,随机裁剪、旋转、缩放等。
tensorflow.keras.models import Sequential: Sequential模型是Keras中的一种模型,它允许您顺序地堆叠层。
tensorflow.keras.layers: 包含了Keras中所有的层类型,如Conv2D、MaxPooling2D、Flatten、Dense等。
tensorflow.keras.optimizers: 包含了Keras中所有的优化器类型,如Adam、SGD等。
sklearn.model_selection import train_test_split: train_test_split是Scikit-Learn的一部分,它用于将数据集分割为训练集和测试集。
numpy as np: NumPy是一个用于科学计算的库,它提供了高效的数组处理能力,对于图像处理等任务非常有用。
sklearn.preprocessing import LabelBinarizer: LabelBinarizer是Scikit-Learn的一部分,它用于将类别标签转换为二进制数组。
matplotlib.pyplot as plt: Matplotlib是一个绘图库,pyplot是其中的一个模块,它提供了一个类似于MATLAB的绘图框架。
import pickle: pickle是Python的标准库,它用于序列化Python对象,以便将它们保存到文件或从文件中加载。

import pandas as pd
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
from tensorflow.keras.optimizers import Adam
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.preprocessing import LabelBinarizer
import matplotlib.pyplot as plt
import pickle

2.定义超参数

INIT_LR = 0.01
EPOCHS = 30
BS = 32

3.读取训练和测试标签CSV文件

train_labels.csv和test_labels.csv在资源中。

# 读取训练标签CSV文件
train_labels_filename = 'train_labels.csv'
train_labels_df = pd.read_csv(train_labels_filename)

# 读取测试标签CSV文件
test_labels_filename = 'test_labels.csv'
test_labels_df = pd.read_csv(test_labels_filename)

4.确保标签是字符串类型

train_labels_df[‘label’] = train_labels_df[‘label’].astype(str):

train_labels_df['label']:这是train_labels_df DataFrame中名为label的列。
.astype(str):这是Pandas中的一个方法,用于将列的数据类型转换为字符串类型。

test_labels_df[‘label’] = test_labels_df[‘label’].astype(str):

test_labels_df['label']:这是test_labels_df DataFrame中名为label的列。
.astype(str):这是Pandas中的一个方法,用于将列的数据类型转换为字符串类型。

train_labels_df['label'] 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值