Assignment
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5289
解题思路:
解法1:枚举左端点,二分右端点,用st算法求区间最值
解法2:用单调队列维护最值
解法3:用multiset维护区间最值(这方法是队友在比赛中用的,我赛后重写了一遍。。。深刻体会了一下multiset的用法)
AC代码:
解法1(st算法):
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string>
#include <cmath>
using namespace std;
int maxsum[100000][30];
int minsum[100000][30];
int a[100000];
int n,k;
void rmq_init()
{
for(int j = 1; (1<<j) <= n; ++j)
for(int i = 1; i + (1<<j) - 1 <= n; ++i)
{
maxsum[i][j] = max(maxsum[i][j-1],maxsum[i+(1<<(j-1))][j-1]);
minsum[i][j] = min(minsum[i][j-1],minsum[i+(1<<(j-1))][j-1]);
}
}
int query(int l, int r)
{
int k = log2(r-l+1);
int Max = max(maxsum[l][k], maxsum[r-(1<<k)+1][k]);
int Min = min(minsum[l][k], minsum[r-(1<<k)+1][k]);
return Max - Min;
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&k);
for(int i = 1; i <= n;++i)
{
scanf("%d",a+i);
maxsum[i][0] = minsum[i][0] = a[i];
}
rmq_init();
long long ans = 0;
int l , r;
for(int i = 1; i <= n; ++i)
{
l = i , r = n;
while(l <= r)
{
int mid = (l+r)/2;
int cha = query(i,mid);
if(cha < k) l = mid+1;
else r = mid - 1;
}
ans += l - i;
}
printf("%lld\n",ans);
}
return 0;
}
解法2(单调队列):
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
using namespace std ;
#define LL long long
deque <LL> Max , Min ;
//单调队列,Max最大值,Min最小值
LL a[100010] ;
int main()
{
int T , n , i , j ;
LL k , ans ;
scanf("%d", &T) ;
while( T-- )
{
scanf("%d %I64d", &n, &k) ;
for(i = 0 ; i < n ; i++)
scanf("%I64d", &a[i]) ;
while( !Max.empty() ) Max.pop_back() ;
while( !Min.empty() ) Min.pop_back() ;
for(i = 0 , j = 0 , ans = 0; i < n ; i++) //i在前,j在后
{
while( !Max.empty() && Max.back() < a[i] ) Max.pop_back() ;
Max.push_back(a[i]) ;
while( !Min.empty() && Min.back() > a[i] ) Min.pop_back() ;
Min.push_back(a[i]) ;
while( !Max.empty() && !Min.empty() && Max.front() - Min.front() >= k )
{
ans += (i-j) ;
if( Max.front() == a[j] ) Max.pop_front() ;
if( Min.front() == a[j] ) Min.pop_front() ;
j++ ;
}
}
while( j < n )
{
ans += (i-j) ;
j++ ;
}
printf("%lld\n", ans) ;
}
return 0 ;
}
解法3(multiset):
#include <iostream>
#include <cstdio>
#include <set>
using namespace std;
typedef long long ll;
multiset<int> minn;
multiset<int,greater<int> > maxn;
int a[100005];
int main(){
int T;
scanf("%d",&T);
while(T--){
int n,k;
scanf("%d%d",&n,&k);
maxn.clear();
minn.clear();
ll ans = 0;
int i,j = 0;
multiset<int>::iterator it1,it2;
for(i = 0; i < n; i++){
scanf("%d",&a[i]);
maxn.insert(a[i]);
minn.insert(a[i]);
while(j <= i && *maxn.begin()-*minn.begin() >= k){
//ans += (i-j);
it1 = maxn.find(a[j]);
it2 = minn.find(a[j]);//注意:一开始没加上这两句,一直wrong,只能说自己对multiset用的还不是很熟。。。
maxn.erase(it1);
minn.erase(it2);
j++;
}
ans += maxn.size();
//cout<<ans<<endl;
}
/*
while(j < n){
ans += (i-j);
j++;
}
*/
printf("%lld\n",ans);
}
return 0;
}