Web Content Mining

本文介绍网页内容挖掘领域的核心问题及现有技术解决方案,包括结构化数据提取、意见挖掘、知识合成等,旨在解决网页数据的异构性和缺乏结构所带来的挑战。

keyword: Web Data Mining - Exploring Hyperlinks, Contents and Usage Data

Web mining is a rapid growing research area. It consists of Web usage mining, Web structure mining, and Web content mining. Web usage mining refers to the discovery of user access patterns from Web usage logs. Web structure mining tries to discover useful knowledge from the structure of hyperlinks. Web content mining aims to extract/mine useful information or knowledge from web page contents. This tutorial focuses on Web Content Mining.

Web content mining is related but different from data mining and text mining. It is related to data mining because many data mining techniques can be applied in Web content mining. It is related to text mining because much of the web contents are texts. However, it is also quite different from data mining because Web data are mainly semi-structured and/or unstructured, while data mining deals primarily with structured data. Web content mining is also different from text mining because of the semi-structure nature of the Web, while text mining focuses on unstructured texts. Web content mining thus requires creative applications of data mining and/or text mining techniques and also its own unique approaches. In the past few years, there was a rapid expansion of activities in the Web content mining area. This is not surprising because of the phenomenal growth of the Web contents and significant economic benefit of such mining. However, due to the heterogeneity and the lack of structure of Web data, automated discovery of targeted or unexpected knowledge information still present many challenging research problems. In this tutorial, we will examine the following important Web content mining problems and discuss existing techniques for solving these problems. Some other emerging problems will also be surveyed.

  • Data/information extraction: Our focus will be on extraction of structured data from Web pages, such as products and search results. Extracting such data allows one to provide services. Two main types of techniques, machine learning and automatic extraction are covered.
  • Web information integration and schema matching: Although the Web contains a huge amount of data, each web site (or even page) represents similar information differently. How to identify or match semantically similar data is a very important problem with many practical applications. Some existing techniques and problems are examined.
  • Opinion extraction from online sources: There are many online opinion sources, e.g., customer reviews of products, forums, blogs and chat rooms. Mining opinions (especially consumer opinions) is of great importance for marketing intelligence and product benchmarking. We will introduce a few tasks and techniques to mine such sources.
  • Knowledge synthesis: Concept hierarchies or ontology are useful in many applications. However, generating them manually is very time consuming. A few existing methods that explores the information redundancy of the Web will be presented. The main application is to synthesize and organize the pieces of information on the Web to give the user a coherent picture of the topic domain..
  • Segmenting Web pages and detecting noise: In many Web applications, one only wants the main content of the Web page without advertisements, navigation links, copyright notices. Automatically segmenting Web page to extract the main content of the pages is interesting problem. A number of interesting techniques have been proposed in the past few years.

All these tasks present major research challenges and their solutions also have immediate real-life applications. The tutorial will start with a short motivation of the Web content mining. We then discuss the difference between web content mining and text mining, and between Web content mining and data mining. This is followed by presenting the above problems and current state-of-the-art techniques. Various examples will also be given to help participants to better understand how this technology can be deployed and to help businesses. All parts of the tutorial will have a mix of research and industry flavor, addressing seminal research concepts and looking at the technology from an industry angle.

 

For more information, please visit our website: http://www.knowlesys.com 

使用雅可比椭圆函数为Reissner平面有限应变梁提供封闭形式解(Matlab代码实现)内容概要:本文介绍了如何使用雅可比椭圆函数为Reissner平面有限应变梁问题提供封闭形式的解析解,并结合Matlab代码实现该求解过程。该方法能够精确描述梁在大变形条件下的非线性力学行为,适用于几何非线性强、传统线性理论失效的工程场景。文中详细阐述了数学建模过程,包括基本假设、控制方程推导以及利用雅可比椭圆函数进行积分求解的技术路线,最后通过Matlab编程验证了解的准确性与有效性。; 适合人群:具备一定固体力学、非线性结构分析基础,熟悉Matlab编程的研究生、博士生及科研人员,尤其适合从事结构力学、航空航天、土木工程等领域中大变形问题研究的专业人士; 使用场景及目标:① 掌握Reissner梁理论在有限应变条件下的数学建模方法;② 学习雅可比椭圆函数在非线性微分方程求解中的实际应用技巧;③ 借助Matlab实现复杂力学问题的符号计算与数值验证,提升理论与仿真结合能力; 阅读建议:建议读者在学习前复习弹性力学与非线性梁理论基础知识,重点关注控制方程的推导逻辑与边界条件的处理方式,同时动手运行并调试所提供的Matlab代码,深入理解椭圆函数库的调用方法与结果可视化流程,以达到理论与实践深度融合的目的。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值