Web Content Mining

本文介绍网页内容挖掘领域的核心问题及现有技术解决方案,包括结构化数据提取、意见挖掘、知识合成等,旨在解决网页数据的异构性和缺乏结构所带来的挑战。

keyword: Web Data Mining - Exploring Hyperlinks, Contents and Usage Data

Web mining is a rapid growing research area. It consists of Web usage mining, Web structure mining, and Web content mining. Web usage mining refers to the discovery of user access patterns from Web usage logs. Web structure mining tries to discover useful knowledge from the structure of hyperlinks. Web content mining aims to extract/mine useful information or knowledge from web page contents. This tutorial focuses on Web Content Mining.

Web content mining is related but different from data mining and text mining. It is related to data mining because many data mining techniques can be applied in Web content mining. It is related to text mining because much of the web contents are texts. However, it is also quite different from data mining because Web data are mainly semi-structured and/or unstructured, while data mining deals primarily with structured data. Web content mining is also different from text mining because of the semi-structure nature of the Web, while text mining focuses on unstructured texts. Web content mining thus requires creative applications of data mining and/or text mining techniques and also its own unique approaches. In the past few years, there was a rapid expansion of activities in the Web content mining area. This is not surprising because of the phenomenal growth of the Web contents and significant economic benefit of such mining. However, due to the heterogeneity and the lack of structure of Web data, automated discovery of targeted or unexpected knowledge information still present many challenging research problems. In this tutorial, we will examine the following important Web content mining problems and discuss existing techniques for solving these problems. Some other emerging problems will also be surveyed.

  • Data/information extraction: Our focus will be on extraction of structured data from Web pages, such as products and search results. Extracting such data allows one to provide services. Two main types of techniques, machine learning and automatic extraction are covered.
  • Web information integration and schema matching: Although the Web contains a huge amount of data, each web site (or even page) represents similar information differently. How to identify or match semantically similar data is a very important problem with many practical applications. Some existing techniques and problems are examined.
  • Opinion extraction from online sources: There are many online opinion sources, e.g., customer reviews of products, forums, blogs and chat rooms. Mining opinions (especially consumer opinions) is of great importance for marketing intelligence and product benchmarking. We will introduce a few tasks and techniques to mine such sources.
  • Knowledge synthesis: Concept hierarchies or ontology are useful in many applications. However, generating them manually is very time consuming. A few existing methods that explores the information redundancy of the Web will be presented. The main application is to synthesize and organize the pieces of information on the Web to give the user a coherent picture of the topic domain..
  • Segmenting Web pages and detecting noise: In many Web applications, one only wants the main content of the Web page without advertisements, navigation links, copyright notices. Automatically segmenting Web page to extract the main content of the pages is interesting problem. A number of interesting techniques have been proposed in the past few years.

All these tasks present major research challenges and their solutions also have immediate real-life applications. The tutorial will start with a short motivation of the Web content mining. We then discuss the difference between web content mining and text mining, and between Web content mining and data mining. This is followed by presenting the above problems and current state-of-the-art techniques. Various examples will also be given to help participants to better understand how this technology can be deployed and to help businesses. All parts of the tutorial will have a mix of research and industry flavor, addressing seminal research concepts and looking at the technology from an industry angle.

 

For more information, please visit our website: http://www.knowlesys.com 

需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参与需求响应,以实现削峰填谷、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,重点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解与结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统与需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计与仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建与算法实现过程,重点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值