题意:一个有向图,找一个最大的点集使得任意两点u、v间都存在一条路(单向或双向),问这个点集最大是多少
思路:强连通分量缩点后得到SCC图,使SCC结点的权等于它的节点个数,找一条路径使得权值和最大即可,找路径用dp记忆化搜索
#include<cstring>
#include<string>
#include<fstream>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cctype>
#include<algorithm>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<stack>
#include<ctime>
#include<cstdlib>
#include<functional>
#include<cmath>
using namespace std;
#define PI acos(-1.0)
#define MAXN 1010
#define eps 1e-7
#define INF 0x3F3F3F3F //0x7FFFFFFF
#define LLINF 0x7FFFFFFFFFFFFFFF
#define seed 1313131
#define MOD 1000000007
#define ll long long
#define ull unsigned ll
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
const int maxm = 50010;
struct node{
int u, v, next;
}edge[maxm], edge1[maxm];
int Stack[MAXN];
int head[MAXN], head1[MAXN], dfn[MAXN], low[MAXN], sccno[MAXN], scc_elem[MAXN];
int scc_cnt, id, cnt, cnt1, top, n, m;
int dp[MAXN];
void add_edge(int u, int v, node edge[], int head[], int &cnt){
edge[cnt].u = u;
edge[cnt].v = v;
edge[cnt].next = head[u];
head[u] = cnt++;
}
void tarjin(int u){
int i, j;
dfn[u] = low[u] = ++id;
Stack[top++] = u;
for(i = head[u]; i != -1; i = edge[i].next){
int v = edge[i].v;
if(dfn[v] == -1){
tarjin(v);
low[u] = min(low[u], low[v]);
}
else if(!sccno[v]){
low[u] = min(low[u], dfn[v]);
}
}
if(low[u] == dfn[u]){
scc_cnt++;
int temp;
do{
temp = Stack[--top];
sccno[temp] = scc_cnt;
}while(temp != u);
}
}
int dfs_DAG(int u){
if(dp[u] > 0) return dp[u];
dp[u] = scc_elem[u];
for(int i = head1[u]; i != -1; i = edge1[i].next){
int v = edge1[i].v;
dp[u] = max(dp[u], scc_elem[u] + dfs_DAG(v));
}
return dp[u];
}
int main(){
int i, j, t;
scanf("%d", &t);
while(t--){
scanf("%d%d", &n, &m);
cnt = cnt1 = scc_cnt = id = top = 0;
memset(head, -1, sizeof(head));
memset(head1, -1, sizeof(head1));
memset(dfn, -1, sizeof(dfn));
memset(sccno, 0, sizeof(sccno));
memset(scc_elem, 0, sizeof(scc_elem));
for(i = 0; i < m; i++){
int u, v;
scanf("%d%d", &u, &v);
add_edge(u, v, edge, head, cnt);
}
for(i = 1; i <= n; i++){
if(dfn[i] == -1) tarjin(i);
}
for(i = 1; i <= n; i++){
int x = sccno[i];
scc_elem[x]++;
}
for(i = 0; i < cnt; i++){
int u = edge[i].u;
int v = edge[i].v;
if(sccno[u] != sccno[v]){
add_edge(sccno[u], sccno[v], edge1, head1, cnt1);
}
}
memset(dp, 0, sizeof(dp));
int ans = 0;
for(i = 1; i <= scc_cnt; i++){
ans = max(ans, dfs_DAG(i));
}
printf("%d\n", ans);
}
return 0;
}