Minimum Cut
传送门1
传送门2
Given a simple unweighted graph
G
(an undirected graph containing no loops nor multiple edges) with
We say that a cut in
Since love needs good faith and hypocrisy return for only grief, you should find the minimum cut of graph
G
respecting the given spanning tree
Input
The input contains several test cases.
The first line of the input is a single integer
t(1≤t≤5)
which is the number of test cases.
Then
t
test cases follow.
Each test case contains several lines.
The first line contains two integers
The following
n−1
lines describe the spanning tree
T
and each of them contains two integers
Next
Output
For each test case, you should output the minimum cut of graph
G
respecting the given spanning tree
Sample Input
1
4 5
1 2
2 3
3 4
1 3
1 4
Sample Output
Case #1: 2
题意
给出一个图
G
,求删除最少的边使的图
分析
显然我们要把一个点从图中分离。那么这个点在树上的度一定为1,再取图上另外要删除的边最少的点,它的度就是另外要删除的边的条数,最后答案加1.
CODE
#include<cstdio>
#include<memory.h>
#define N 20005
int ct[N],dg[N];
int main() {
int T;
scanf("%d",&T);
for(int cas=1; cas<=T; cas++) {
int n,m;
scanf("%d%d",&n,&m);
memset(ct,0,sizeof ct);
memset(dg,0,sizeof dg);
int u,v;
for(int i=1; i<n; i++) {
scanf("%d%d",&u,&v);
dg[u]++;
dg[v]++;
}
for(int i=n; i<=m; i++) {
scanf("%d%d",&u,&v);
ct[u]++;
ct[v]++;
}
int res=2e9;
for(int i=2; i<=n; i++)if(dg[i]==1)if(res>ct[i])res=ct[i];
printf("Case #%d: %d\n",cas,res+1);
}
return 0;
}
本文介绍了一个图论问题:如何找到删除最少数量的边使得图断开连接,且恰好有一条边属于给定的生成树。文章提供了一种有效的方法来解决这个问题,并附带了实现这一算法的C++代码。
1751

被折叠的 条评论
为什么被折叠?



