引言
Paxos算法是Lamport宗师提出的一种基于消息传递的分布式一致性算法,是目前公认的解决分布式一致性问题最有效的算法之一。Google Chubby的作者Mike Burrows曾经狂妄的说过这个世界上只有一种一致性算法,那就是Paxos,其它的算法都是残次品。
Paxos算法是一种理念,你可以在很多分布式系统的设计中看到它的影子,例如在分布式锁、主从复制、命名服务、分布式协调等常见场景下,Paxos算法都有着广泛的应用。
什么是分布式一致性
分布式一致性是指在分布式系统中,多个节点对同一份数据进行修改或读取时,保证这些操作所产生的结果都是相同的。在实际应用中,由于网络延迟、节点崩溃等因素的存在,可能会导致不同节点的数据副本出现不一致的情况。因此,分布式一致性成为了分布式系统设计中一个非常重要的问题。
例如,考虑一个在线购物网站的场景,该网站使用分布式系统处理订单和库存信息。当一个用户下单时,该订单会被写入多个节点的数据库中并同时减少相应商品的库存数量。由于数据需要在节点之间进行复制以提高可用性和性能,如果某个节点上的订单状态与另一个节点不同步,则可能导致错误的商品数量被减少,从而导致库存错误。
Paxos 算法主要就是解决如何在一个可能发生故障的分布式系统中,快速正确的在集群内对某个值达成一致,并且保证整个系统的一致性。
Quorum 机制
学习Paxos算法之前需要先了解分布式系统中的一个选举算法Quorum,Quorum算法会在Paxos算法中出现。Quorum 选举算法的主要数学思想来源于抽屉原理:“如果每个格子代表一个集合,每一个格子就可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定有一个集合里至少有两个元素。” 应用到分布式领域可以解释为,在 N 个副本中,一次更新成功的如果有 W 个,那么我在读取数据时是要从大于 N-W 个副本中读取,这样才能至少读到一个更新的数据了。
和 Quorum 机制对应的是 WARO(Write All Read one),是一种简单的副本控制协议,当 Client 请求向某副本写数据时,只有当所有的副本都更新成功之后,这次写操作才算成功,否则视为失败。 WARO 优先保证读服务,因为所有的副本更新成功,才能视为更新成功,从而保证了所有的副本一致,这样的话,只