ElasticSearch 聚合统计

在这里插入图片描述

准备数据

PUT user
{
  "mappings": {
    "properties": {
      "age": {"type": "integer"},
      "email": {"type": "keyword"},
      "name": {"type": "keyword"},
      "address": {"type": "text", "analyzer": "ik_smart"}
    }
  }
}
POST user/_bulk
{"index": {"_id": 1}}
{"name": "张三", "age": 10, "email": "1.qq.com", "address": "北京朝阳"}
{"index": {"_id": 2}}
{"name": "李四", "age": 20, "email": "2.qq.com", "address": "北京西城"}
{"index": {"_id": 3}}
{"name": "王五", "age": 30, "email": "3.qq.com", "address": "北京东城"}
{"index": {"_id": 4}}
{"name": "赵六", "age": 40, "email": "4.qq.com", "address": "北京海淀"}

聚合统计

度量聚合:求字段的平均值,最小值,最大值,总和等
桶聚合:将文档分成不同的桶,桶的划分可以根据字段的值,范围,日期间隔
管道聚合:在桶聚合的结果上执行进一步计算

进行聚合的语法如下

{
  "aggs": {
    "<agg_name>": {
      "<agg_type>": {
        "field": "<field_name>"
      }
    }
  }
}

聚合也可以进行嵌套

{
  "aggs": {
    "<agg_name>": {
      "<agg_type>": {
        "field": "<field_name>"
      },
      "aggs": {
        "<agg_child_name>": {
          "<agg_type>": {
            "field": "<field_name>"
          }
        }
      }
    }
  }
}

度量聚合(Metrics aggregations)

平均值聚合

POST user/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {"avg_age": {"avg": {"field": "age"}}}
}

在 ElasticSearch 中进行聚合统计时,默认情况下会返回原始文档和聚合结果,如果只想获取聚合结果而不需要原始文档,可以通过设置 size 参数为 0 来实现

POST user/_search
{
  "size": 0,
  "query": {
    "match_all": {}
  },
  "aggs": {"avg_age": {"avg": {"field": "age"}}}
}

在这里插入图片描述

最小值 / 最大值 聚合

POST user/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {"max_age": {"max": {"field": "age"}}}
}
POST user/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {"min_age": {"min": {"field": "age"}}}
}

求和聚合

POST user/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {"sum_age": {"sum": {"field": "age"}}}
}

桶聚合(Bucket aggregations)

词条聚合(Terms aggregation)

按照某个字段的值进行聚合

POST user/_search
{
  "size": 0,
  "query": {
    "match_all": {}
  },
  "aggs": {"group_by_age": {"terms": {"field": "age"}}}
}

在这里插入图片描述

范围聚合(Range aggregation)

按照某个字段的范围进行聚合,from提供区间下界(包括),to提供区间上界(不包括)

POST user/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "age_ranges":{
      "range": {
        "field": "age",
        "ranges": [
          { "to": 10 },
          { "from": 10, "to": 20 },
          { "from": 20 }
        ]
      }
    }
  }
}

管道聚合(Pipeline aggregations)

平均桶聚合(Average bucket aggregation)

POST user/_search
{
  "size": 0,
  "query": {
    "match_all": {}
  },
  "aggs": {
    "age_ranges": {
      "range": {
        "field": "age",
        "ranges": [
          { "to": 10 }, { "from": 10, "to": 20 }, { "from": 20 }
        ]
      },
      "aggs": {
        "age_avg": {"avg": {"field": "age"}}
      }
    },
    "range_avg": {
      "avg_bucket": {"buckets_path": "age_ranges>age_avg"}
    }
  }
}

对年龄分组,并求分组后的平均值,然后对分组的平均值再求平均值

在这里插入图片描述

求和桶聚集(Sum bucket aggregation)

POST user/_search
{
  "query": {
    "match_all": {}
  },
  "aggs": {
    "age_ranges": {
      "range": {
        "field": "age",
        "ranges": [
          { "to": 10 }, { "from": 10, "to": 20 }, { "from": 20 }
        ]
      },
      "aggs": {
        "age_sum": { "sum": {"field": "age"} }
      }
    },
    "range_sum": {
      "sum_bucket": { "buckets_path": "age_ranges>age_sum" }
    }
  }
}

对年龄分组,并求分组后的和,然后对分组的和再求和

参考博客

[1]https://www.elastic.co/guide/en/elasticsearch/reference/8.11/search-aggregations.html
[2]https://juejin.cn/post/7103514121642983455

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Java识堂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值