问n个不同的节点可以组成多少种不同的树
首先考虑对于相同的n个节点可以形成多少种树,设DP[N]为N个节点的情况,我们分别考虑左右子树的情况,假设左子树有i个节点,那么相对的右子树就存在N-i-1个节点,
那么就有DP[N]=DP[i]*DP[N-i-1] i=0.1.2....N-1
这是节点都相同的情况,那么,对于任意一个由k个节点组成的其中一种树,当这k个节点都不相同时,考虑k的全排列个数就是这种树的所有可能情况,k的全排列个数就是k!
因此最后对每个i
DP[i]*=i!,就是最后的答案
参考了SJTU的大数模板
#include<iostream>
#include<cstring>
#define lld long long int
const int MAXN=9999;
const int DLEN=4;
using namespace std;
class BigNum{
private:
int a[1800];
int len;
public:
BigNum(){len=1;memset(a,0,sizeof(a));}
BigNum(const char*);
BigNum(const int);
BigNum(const BigNum&);
BigNum& operator=(const BigNum&);
BigNum operator+(const BigNum&)const;
BigNum operator-(const BigNum&)const;
BigNum operator*(const BigNum&)const;
BigNum operator/(const int&)const;
BigNum operator^(const int&)const;
int operator%(const int &)const;
bool operator>(const BigNum&)const;
void print();
};
BigNum::BigNum(const int n){
int c,d=n;
len=0;
memset(a,0,sizeof(a));
while(d>MAXN){
c=d-(d/(MAXN+1))*(MAXN+1);
d=d/(MAXN+1);
a[len++]=c;
}
a[len++]=d;
}
BigNum::BigNum(const char *s){
int t,k,index,l,i;
memset(a,0,sizeof(a));
l=strlen(s);
len=l/DLEN;
if(l%DLEN)
len++;
index=0;
for(i=l-1;i>=0;i-=DLEN){
t=0;
k=i-DLEN+1;
if(k<0) k=0;
for(int j=k;j<=i;j++)
t=t*10+s[j]-'0';
a[index++]=t;
}
}
BigNum::BigNum(const BigNum &T):len(T.len){
int i;
memset(a,0,sizeof(a));
for(i=0;i<len;i++)
a[i]=T.a[i];
}
BigNum& BigNum::operator=(const BigNum& n){
len=n.len;
memset(a,0,sizeof(a));
int i;
for(i=0;i<len;i++)
a[i]=n.a[i];
return *this;
}
BigNum BigNum::operator+(const BigNum &T)const{
BigNum t(*this);
int i,big;
big=T.len>len?T.len:len;
for(i=0;i<big;i++){
t.a[i]+=T.a[i];
if(t.a[i]>MAXN){
t.a[i+1]++;
t.a[i]-=MAXN+1;
}
}
if(t.a[big]!=0)
t.len=big+1;
else
t.len=big;
return t;
}
BigNum BigNum::operator-(const BigNum &T)const{
int i,j,big;
bool flag;
BigNum t1,t2;
if(*this>T){
t1=*this;
t2=T;
flag=0;
}
else{
t1=T;
t2=*this;
flag=1;
}
big=t1.len;
for(i=0;i<big;i++){
if(t1.a[i]<t2.a[i]){
j=i+1;
while(t1.a[j]==0)
j++;
t1.a[j--]--;
while(j>i)
t1.a[j--]+=MAXN;
t1.a[i]+=MAXN+1-t2.a[i];
}
else t1.a[i]-=t2.a[i];
}
t1.len=big;
while(t1.a[len-1]==0&&t1.len>1){
t1.len--;
big--;
}
if(flag)
t1.a[big-1]=0-t1.a[big-1];
return t1;
}
BigNum BigNum::operator*(const BigNum & T) const {
BigNum ret;
int i,j,up;
int temp,temp1;
for(i = 0 ; i < len ; i++) {
up = 0;
for(j = 0 ; j < T.len ; j++) {
temp = a[i] * T.a[j] + ret.a[i + j] + up;
if(temp > MAXN) {
temp1 = temp - temp / (MAXN + 1) * (MAXN + 1);
up = temp / (MAXN + 1);
ret.a[i + j] = temp1;
}
else {
up = 0;
ret.a[i + j] = temp;
}
}
if(up != 0)
ret.a[i + j] = up;
}
ret.len = i + j;
while(ret.a[ret.len - 1] == 0 && ret.len > 1)
ret.len--;
return ret;
}
BigNum BigNum::operator/(const int & b) const {BigNum ret;
int i,down = 0;
for(i = len - 1 ; i >= 0 ; i--) {
ret.a[i] = (a[i] + down * (MAXN + 1)) / b;
down = a[i] + down * (MAXN + 1) - ret.a[i] * b;
}
ret.len = len;
while(ret.a[ret.len - 1] == 0 && ret.len > 1)
ret.len--;
return ret;
}
int BigNum::operator %(const int & b) const {
int i,d=0;
for (i = len-1; i>=0; i--) {
d = ((d * (MAXN+1))% b + a[i])% b;
}
return d;
}
BigNum BigNum::operator^(const int & n) const {
BigNum t,ret(1);
if(n<0)exit(-1);
if(n==0)
return 1;
if(n==1)
return *this;
int m=n;
while(m>1) {
t=*this;
int i;
for(i=1;i<<1<=m;i<<=1) {
t=t*t;
}
m-=i;
ret=ret*t;
if(m==1)
ret=ret*(*this);
}
return ret;
}
bool BigNum::operator>(const BigNum & T) const {int ln;
if(len > T.len)
return true;
else if(len == T.len) {
ln = len - 1;
while(a[ln] == T.a[ln] && ln >= 0)
ln--;
if(ln >= 0 && a[ln] > T.a[ln])
return true;
else
return false;
}
else return false;
}
void BigNum::print() {
int i;
cout << a[len - 1];
for(i = len - 2 ; i >= 0 ; i--) {
cout.width(DLEN);
cout.fill('0');
cout << a[i];
}
}
BigNum DP[101];
BigNum tmp[101];
int main(){
for(int i=0;i<=100;i++){
if(i==0)
tmp[i]=1;
else
tmp[i]=tmp[i-1]*i;
}
for(int i=0;i<=100;i++){
if(i==0||i==1)
DP[i]=1;
else{
DP[i]=0;
for(int j=0;j<=i-1;j++){
DP[i]=DP[i]+DP[j]*DP[i-1-j];
}
}
}
for(int i=0;i<=100;i++)
DP[i]=DP[i]*tmp[i];
int n;
while(cin>>n&&n){
DP[n].print();
cout<<endl;
}
return 0;
}