poj 3661 runnning 区间dp

本文介绍了一道关于赛跑的算法题目,目标是通过合理的休息和奔跑策略来最大化跑步距离,同时确保疲劳值最终归零。文章使用了动态规划方法进行解答,并详细展示了代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Running
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 7243 Accepted: 2724

Description

The cows are trying to become better athletes, so Bessie is running on a track for exactly N (1 ≤ N ≤ 10,000) minutes. During each minute, she can choose to either run or rest for the whole minute.

The ultimate distance Bessie runs, though, depends on her 'exhaustion factor', which starts at 0. When she chooses to run in minute i, she will run exactly a distance of Di (1 ≤ Di ≤ 1,000) and her exhaustion factor will increase by 1 -- but must never be allowed to exceed M (1 ≤ M ≤ 500). If she chooses to rest, her exhaustion factor will decrease by 1 for each minute she rests. She cannot commence running again until her exhaustion factor reaches 0. At that point, she can choose to run or rest.

At the end of the N minute workout, Bessie's exaustion factor must be exactly 0, or she will not have enough energy left for the rest of the day.

Find the maximal distance Bessie can run.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 contains the single integer: Di

Output

* Line 1: A single integer representing the largest distance Bessie can run while satisfying the conditions.
 

Sample Input

5 2
5
3
4
2
10

Sample Output

9

题意:给你一个n,m,n表示有n分钟,每i分钟对应的是第i分钟能跑的距离,m代表最大疲劳度,每跑一分钟疲劳度+1,当疲劳度==m,必须休息,在任意时刻都可以选择休息,如果选择休息,那么必须休息到疲劳度为0,当疲劳度为0的时候也是可以继续选择休息的,求在n分钟后疲劳度为0所跑的最大距离

dp[i][j]表示第i分钟疲劳值为j时的最大值。

#include <iostream>
#include <string>
#include <algorithm>
#include <cmath>
#include <string.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 10050;
const int maxm = 550;
int dp[maxn][maxm], d[maxn];
int n, m;
int main() {
    //freopen("in.txt", "r", stdin);
    memset(dp, 0, sizeof(dp));
    cin >> n >> m;
    for (int i = 1; i <= n; ++i) {
        cin >> d[i];
    }
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= min(m, i); ++j) {
            dp[i][j] = dp[i - 1][j - 1] + d[i];
        }
        //疲劳值为0时继续休息
        dp[i][0] = dp[i - 1][0];
        //休息就必须休息到疲劳值为0为止
        for (int j = 1; j <= m; ++j) {
            if (i >= j)
                dp[i][0] = max(dp[i][0], dp[i - j][j]);
        }
    }
    cout << dp[n][0] << endl;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值